Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Clinical and Translational Science ; 6(s1):43, 2022.
Article in English | ProQuest Central | ID: covidwho-1795912

ABSTRACT

OBJECTIVES/GOALS: Using the covariate-rich Veteran Health Administration data, estimate the association between Proton Pump Inhibitor (PPI) use and severe COVID-19, rigorously adjusting for confounding using propensity score (PS)-weighting. METHODS/STUDY POPULATION: We assembled a national retrospective cohort of United States veterans who tested positive for SARS-CoV-2, with information on 33 covariates including comorbidity diagnoses, lab values, and medications. Current outpatient PPI use was compared to non-use (two or more fills and pills on hand at admission vs no PPI prescription fill in prior year). The primary composite outcome was mechanical ventilation use or death within 60 days;the secondary composite outcome included ICU admission. PS-weighting mimicked a 1:1 matching cohort, allowing inclusion of all patients while achieving good covariate balance. The weighted cohort was analyzed using logistic regression. RESULTS/ANTICIPATED RESULTS: Our analytic cohort included 97,674 veterans with SARS-CoV-2 testing, of whom 14,958 (15.3%) tested positive (6,262 [41.9%] current PPI-users, 8,696 [58.1%] non-users). After weighting, all covariates were well-balanced with standardized mean differences less than a threshold of 0.1. Prior to PS-weighting (no covariate adjustment), we observed higher odds of the primary (9.3% vs 7.5%;OR 1.27, 95% CI 1.13-1.43) and secondary (25.8% vs 21.4%;OR 1.27, 95% CI 1.18-1.37) outcomes among PPI users vs non-users. After PS-weighting, PPI use vs non-use was not associated with the primary (8.2% vs 8.0%;OR 1.03, 95% CI 0.91-1.16) or secondary (23.4% vs 22.9%;OR 1.03, 95% CI 0.95-1.12) outcomes. DISCUSSION/SIGNIFICANCE: The associations between PPI use and severe COVID-19 outcomes that have been previously reported may be due to limitations in the covariates available for adjustment. With respect to COVID-19, our robust PS-weighted analysis provides patients and providers with further evidence for PPI safety.

2.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327268

ABSTRACT

Genetic predisposition to venous thrombosis may impact COVID-19 infection and its sequelae. Participants in the ongoing prospective cohort study, Million Veteran Program (MVP), who were tested for COVID-19, with European ancestry, were evaluated for associations with polygenic venous thromboembolic risk, Factor V Leiden mutation (FVL) (rs6025) and prothrombin gene 3'-UTR mutation (F2 G20210A)(rs1799963), and their interactions. Logistic regression models assessed genetic associations with VTE diagnosis, COVID-19 (positive) testing rates and outcome severity (modified WHO criteria), and post-test conditions, adjusting for outpatient anticoagulation medication usage, age, sex, and genetic principal components. 108,437 out of 464,961 European American MVP participants were tested for COVID-19 with 9786 (9%) positive. PRS(VTE), FVL, F2 G20210A were not significantly associated with the propensity of being tested for COVID-19. PRS(VTE) was significantly associated with a positive COVID-19 test in F5 wild type (WT) individuals (OR 1.05;95% CI [1.02-1.07]), but not in FVL carriers (0.97, [0.91-1.94]). There was no association with severe outcome for FVL, F2 G20210A or PRS(VTE). Outpatient anticoagulation usage in the two years prior to testing was associated with worse clinical outcomes. PRS(VTE) was associated with prevalent VTE diagnosis among both FVL carriers or F5 wild type individuals as well as incident VTE in the two years prior to testing. Increased genetic propensity for VTE in the MVP was associated with increased COVID-19 positive testing rates, suggesting a role of coagulation in the initial steps of COVID-19 infection.

3.
JAMA Intern Med ; 182(4): 386-395, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1653126

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. Objective: Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. Design, Setting, and Participants: This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. Exposures: The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). Main Outcomes and Measures: The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). Results: Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. Conclusions and Relevance: In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.


Subject(s)
Acute Kidney Injury , COVID-19 , Veterans , Acute Kidney Injury/genetics , African Americans/genetics , Aged , Apolipoprotein L1/genetics , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
5.
Hepatology ; 74(2): 1049-1064, 2021 08.
Article in English | MEDLINE | ID: covidwho-1372725

ABSTRACT

The aim of this document is to provide a concise scientific review of the currently available COVID-19 vaccines and those in development, including mRNA, adenoviral vectors, and recombinant protein approaches. The anticipated use of COVID-19 vaccines in patients with chronic liver disease (CLD) and liver transplant (LT) recipients is reviewed and practical guidance is provided for health care providers involved in the care of patients with liver disease and LT about vaccine prioritization and administration. The Pfizer and Moderna mRNA COVID-19 vaccines are associated with a 94%-95% vaccine efficacy compared to placebo against COVID-19. Local site reactions of pain and tenderness were reported in 70%-90% of clinical trial participants, and systemic reactions of fever and fatigue were reported in 40%-70% of participants, but these reactions were generally mild and self-limited and occurred more frequently in younger persons. Severe hypersensitivity reactions related to the mRNA COVID-19 vaccines are rare and more commonly observed in women and persons with a history of previous drug reactions for unclear reasons. Because patients with advanced liver disease and immunosuppressed patients were excluded from the vaccine licensing trials, additional data regarding the safety and efficacy of COVID-19 vaccines are eagerly awaited in these and other subgroups. Remarkably safe and highly effective mRNA COVID-19 vaccines are now available for widespread use and should be given to all adult patients with CLD and LT recipients. The online companion document located at https://www.aasld.org/about-aasld/covid-19-resources will be updated as additional data become available regarding the safety and efficacy of other COVID-19 vaccines in development.


Subject(s)
COVID-19 Vaccines/standards , COVID-19/prevention & control , Liver Diseases , Liver Transplantation , Adult , COVID-19 Vaccines/administration & dosage , Consensus , Humans , Practice Guidelines as Topic , SARS-CoV-2/immunology , United States
6.
PLoS One ; 16(5): e0251651, 2021.
Article in English | MEDLINE | ID: covidwho-1226903

ABSTRACT

BACKGROUND: The risk factors associated with the stages of Coronavirus Disease-2019 (COVID-19) disease progression are not well known. We aim to identify risk factors specific to each state of COVID-19 progression from SARS-CoV-2 infection through death. METHODS AND RESULTS: We included 648,202 participants from the Veteran Affairs Million Veteran Program (2011-). We identified characteristics and 1,809 ICD code-based phenotypes from the electronic health record. We used logistic regression to examine the association of age, sex, body mass index (BMI), race, and prevalent phenotypes to the stages of COVID-19 disease progression: infection, hospitalization, intensive care unit (ICU) admission, and 30-day mortality (separate models for each). Models were adjusted for age, sex, race, ethnicity, number of visit months and ICD codes, state infection rate and controlled for multiple testing using false discovery rate (≤0.1). As of August 10, 2020, 5,929 individuals were SARS-CoV-2 positive and among those, 1,463 (25%) were hospitalized, 579 (10%) were in ICU, and 398 (7%) died. We observed a lower risk in women vs. men for ICU and mortality (Odds Ratio (95% CI): 0.48 (0.30-0.76) and 0.59 (0.31-1.15), respectively) and a higher risk in Black vs. Other race patients for hospitalization and ICU (OR (95%CI): 1.53 (1.32-1.77) and 1.63 (1.32-2.02), respectively). We observed an increased risk of all COVID-19 disease states with older age and BMI ≥35 vs. 20-24 kg/m2. Renal failure, respiratory failure, morbid obesity, acid-base balance disorder, white blood cell diseases, hydronephrosis and bacterial infections were associated with an increased risk of ICU admissions; sepsis, chronic skin ulcers, acid-base balance disorder and acidosis were associated with mortality. CONCLUSIONS: Older age, higher BMI, males and patients with a history of respiratory, kidney, bacterial or metabolic comorbidities experienced greater COVID-19 severity. Future studies to investigate the underlying mechanisms associated with these phenotype clusters and COVID-19 are warranted.


Subject(s)
COVID-19/epidemiology , Veterans Health , Age Factors , Aged , Aged, 80 and over , Body Mass Index , COVID-19/mortality , Disease Progression , Female , Hospitalization , Humans , Intensive Care Units , Longitudinal Studies , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Sex Factors , United States/epidemiology , Veterans
7.
Nat Med ; 27(4): 668-676, 2021 04.
Article in English | MEDLINE | ID: covidwho-1174686

ABSTRACT

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10-6; IFNAR2, P = 9.8 × 10-11 and IL-10RB, P = 2.3 × 10-14) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.


Subject(s)
COVID-19/genetics , Drug Repositioning , Mendelian Randomization Analysis/methods , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , COVID-19/drug therapy , Genome-Wide Association Study , Humans , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/physiology , Quantitative Trait Loci , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL