Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JAMA Otolaryngol Head Neck Surg ; 148(4): 307-315, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1706644

ABSTRACT

IMPORTANCE: Emerging reports of sudden sensorineural hearing loss (SSNHL) after COVID-19 vaccination within the otolaryngological community and the public have raised concern about a possible association between COVID-19 vaccination and the development of SSNHL. OBJECTIVE: To examine the potential association between COVID-19 vaccination and SSNHL. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study and case series involved an up-to-date population-based analysis of 555 incident reports of probable SSNHL in the Centers for Disease Control and Prevention Vaccine Adverse Events Reporting System (VAERS) over the first 7 months of the US vaccination campaign (December 14, 2020, through July 16, 2021). In addition, data from a multi-institutional retrospective case series of 21 patients who developed SSNHL after COVID-19 vaccination were analyzed. The study included all adults experiencing SSNHL within 3 weeks of COVID-19 vaccination who submitted reports to VAERS and consecutive adult patients presenting to 2 tertiary care centers and 1 community practice in the US who were diagnosed with SSNHL within 3 weeks of COVID-19 vaccination. EXPOSURES: Receipt of a COVID-19 vaccine produced by any of the 3 vaccine manufacturers (Pfizer-BioNTech, Moderna, or Janssen/Johnson & Johnson) used in the US. MAIN OUTCOMES AND MEASURES: Incidence of reports of SSNHL after COVID-19 vaccination recorded in VAERS and clinical characteristics of adult patients presenting with SSNHL after COVID-19 vaccination. RESULTS: A total of 555 incident reports in VAERS (mean patient age, 54 years [range, 15-93 years]; 305 women [55.0%]; data on race and ethnicity not available in VAERS) met the definition of probable SSNHL (mean time to onset, 6 days [range, 0-21 days]) over the period investigated, representing an annualized incidence estimate of 0.6 to 28.0 cases of SSNHL per 100 000 people per year. The rate of incident reports of SSNHL was similar across all 3 vaccine manufacturers (0.16 cases per 100 000 doses for both Pfizer-BioNTech and Moderna vaccines, and 0.22 cases per 100 000 doses for Janssen/Johnson & Johnson vaccine). The case series included 21 patients (mean age, 61 years [range, 23-92 years]; 13 women [61.9%]) with SSNHL, with a mean time to onset of 6 days (range, 0-15 days). Patients were heterogeneous with respect to clinical and demographic characteristics. Preexisting autoimmune disease was present in 6 patients (28.6%). Of the 14 patients with posttreatment audiometric data, 8 (57.1%) experienced improvement after receiving treatment. One patient experienced SSNHL 14 days after receiving each dose of the Pfizer-BioNTech vaccine. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, findings from an updated analysis of VAERS data and a case series of patients who experienced SSNHL after COVID-19 vaccination did not suggest an association between COVID-19 vaccination and an increased incidence of hearing loss compared with the expected incidence in the general population.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Vaccines , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sudden/epidemiology , Hearing Loss, Sudden/etiology , Humans , Male , Middle Aged , Retrospective Studies , Vaccination/adverse effects
2.
Ann Otol Rhinol Laryngol ; : 34894211051810, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1495820

ABSTRACT

OBJECTIVES: As telemedicine has become increasingly utilized during the COVID-19 pandemic, portable otoendoscopy offers a method to perform an ear examination at home. The objective of this pilot study was to assess the quality of otoendoscopic images obtained by non-medical individuals and to determine the effect of a simple training protocol on image quality. METHODS: Non-medical participants were recruited and asked to capture images of the tympanic membrane before and after completion of a training module, as well as complete a survey about their experience using the otoendoscope. Images were de-identified, randomized, and evaluated by 6 otolaryngologists who were blinded as to whether training had been performed prior to the image capture. Images were rated using a 5-point Likert scale. RESULTS: Completion of a training module resulted in a significantly higher percentage of tympanic membrane visible on otoendoscopic images, as well as increased physician confidence in identifying middle ear effusion/infection, cholesteatoma, and deferring an in-person otoscopy (P < .0001). However, even with improved image quality, in most cases, physicians reported that they would not feel comfortable using the images to for diagnosis or to defer an in-person examination. Most participants reported that the otoendoscope was simple to use and that they would feel comfortable paying for the device. CONCLUSIONS: At-home otoendoscopes can offer a sufficient view of the tympanic membrane in select cases. The use of a simple training tool can significantly improve image quality, though often not enough to replace an in-person otoscopic exam.

3.
Otolaryngol Head Neck Surg ; : 1945998211051588, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1450677

ABSTRACT

During the COVID-19 pandemic, the utility of portable audiometry became more apparent as elective procedures were deferred in an effort to limit exposure to health care providers. Herein, we retrospectively evaluated mobile-based audiometry in the emergency department and outpatient otology and audiology clinics. Air conduction thresholds with mobile audiometry were within 5 dB in 66% of tests (95% CI, 62.8%-69.09%) and within 10 dB in 84% of tests (95% CI, 81.4%-86.2%) as compared with conventional audiometry. No significant differences were noted between mobile-based and conventional audiometry at any frequencies, except 8 kHz (P < .05). The sensitivity and specificity for screening for hearing loss were 94.3% (95% CI, 91.9%-96.83%) and 92.3% (95% CI, 90.1%-94.4%), respectively. While automated threshold audiometry does not replace conventional audiometry, mobile audiometry is a promising screening tool when conventional audiometry is not available.

4.
Otol Neurotol ; 42(8): 1275-1284, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1358514

ABSTRACT

OBJECTIVE: To investigate the influence of the COVID-19 pandemic on operative practices of otology and neurotology providers internationally. STUDY DESIGN: Cross-sectional survey. METHODS: A 78-question survey was distributed to otologists and neurotologists between May 12, 2020 and June 8, 2020 to assess the impact of the pandemic on surgical practices. Sections within the survey delineated time periods: prior to the crisis, onset of the crisis, during the crisis, postcrisis transition. RESULTS: Of 396 survey respondents, 284 participants from 38 countries met inclusion criteria.Respondents were 16.9% female and 82.4% male, with a most common age range of 40 to 49 years (36.3%). 69.8% of participants had been in practice for over 10 years and most respondents worked in an academic medical center (79.2%). The average operative weekly caseload was 5.3 (SD 3.9) per surgeon prior to the crisis, 0.7 (SD 1.2) during the COVID-19 crisis, and 3.5 (SD 3.3) for those who had begun a postcrisis transition at the time of survey administration (p < 0.001). 71.5% of providers did not perform an elective otologic or neurotologic operative procedure during the initial crisis period. 49.8% reported modifying their surgical technique due to the COVID-19 pandemic. Use of powered air-purifying respirators and filtering facepiece 2 or 3 (FFP2/FFP3) respirators were in minimal supply for 66.9% and 62.3% of respondents, respectively. CONCLUSION: The COVID-19 pandemic impacted the otology and neurotology community globally, resulting in significant changes in operative volume and case selection. Modification of surgical technique and shortages of personal protective equipment were frequently reported.


Subject(s)
COVID-19 , Pandemics , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Otolaryngologists , SARS-CoV-2 , Surveys and Questionnaires
5.
Otolaryngol Head Neck Surg ; 165(1): 163-165, 2021 07.
Article in English | MEDLINE | ID: covidwho-1295296

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic resulted in widespread unprecedented changes to the health care system. Herein, we sought to assess the impact of the viral outbreak on clinical presentations of sudden sensorineural hearing loss (SSNHL) at a single academic center. Our results demonstrate a decrease in the absolute number of patients presenting with SSNHL to our institution during the initial onset of the COVID-19 pandemic compared to an analogous time frame 1 year prior. However, the ratio of patients with SSNHL compared to total patients evaluated was largely similar during the 2 time periods. Based on data from our institution, the COVID-19 virus does not appear to confer a significantly increased risk for the development of SSNHL.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sudden/epidemiology , Humans , Retrospective Studies
7.
Otol Neurotol ; 41(9): 1163-1174, 2020 10.
Article in English | MEDLINE | ID: covidwho-724839

ABSTRACT

: This combined American Neurotology Society, American Otological Society, and American Academy of Otolaryngology - Head and Neck Surgery Foundation document aims to provide guidance during the coronavirus disease of 2019 (COVID-19) on 1) "priority" of care for otologic and neurotologic patients in the office and operating room, and 2) optimal utilization of personal protective equipment. Given the paucity of evidence to inform otologic and neurotologic best practices during COVID-19, the recommendations herein are based on relevant peer-reviewed articles, the Centers for Disease Control and Prevention COVID-19 guidelines, United States and international hospital policies, and expert opinion. The suggestions presented here are not meant to be definitive, and best practices will undoubtedly change with increasing knowledge and high-quality data related to COVID-19. Interpretation of this guidance document is dependent on local factors including prevalence of COVID-19 in the surgeons' local community. This is not intended to set a standard of care, and should not supersede the clinician's best judgement when managing specific clinical concerns and/or regional conditions.Access to otologic and neurotologic care during and after the COVID-19 pandemic is dependent upon adequate protection of physicians, audiologists, and ancillary support staff. Otolaryngologists and associated staff are at high risk for COVID-19 disease transmission based on close contact with mucosal surfaces of the upper aerodigestive tract during diagnostic evaluation and therapeutic procedures. While many otologic and neurotologic conditions are not imminently life threatening, they have a major impact on communication, daily functioning, and quality of life. In addition, progression of disease and delay in treatment can result in cranial nerve deficits, intracranial and life-threatening complications, and/or irreversible consequences. In this regard, many otologic and neurotologic conditions should rightfully be considered "urgent," and almost all require timely attention to permit optimal outcomes. It is reasonable to proceed with otologic and neurotologic clinic visits and operative cases based on input from expert opinion of otologic care providers, clinic/hospital administration, infection prevention and control specialists, and local and state public health leaders. Significant regional variations in COVID-19 prevalence exist; therefore, physicians working with local municipalities are best suited to make determinations on the appropriateness and timing of otologic and neurotologic care.


Subject(s)
Coronavirus Infections/epidemiology , Neurotology/organization & administration , Otolaryngologists , Otolaryngology/organization & administration , Pneumonia, Viral/epidemiology , Adrenal Cortex Hormones/therapeutic use , Betacoronavirus , COVID-19 , Centers for Disease Control and Prevention, U.S. , Humans , Operating Rooms , Pandemics , Personal Protective Equipment/standards , Practice Guidelines as Topic , Quality of Life , Risk Assessment , SARS-CoV-2 , United States
8.
Otolaryngol Head Neck Surg ; 164(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: covidwho-650363

ABSTRACT

OBJECTIVE: To investigate small-particle aerosolization from mastoidectomy relevant to potential viral transmission and to test source-control mitigation strategies. STUDY DESIGN: Cadaveric simulation. SETTING: Surgical simulation laboratory. METHODS: An optical particle size spectrometer was used to quantify 1- to 10-µm aerosols 30 cm from mastoid cortex drilling. Two barrier drapes were evaluated: OtoTent1, a drape sheet affixed to the microscope; OtoTent2, a custom-structured drape that enclosed the surgical field with specialized ports. RESULTS: Mastoid drilling without a barrier drape, with or without an aerosol-scavenging second suction, generated large amounts of 1- to 10-µm particulate. Drilling under OtoTent1 generated a high density of particles when compared with baseline environmental levels (P < .001, U = 107). By contrast, when drilling was conducted under OtoTent2, mean particle density remained at baseline. Adding a second suction inside OtoTent1 or OtoTent2 kept particle density at baseline levels. Significant aerosols were released upon removal of OtoTent1 or OtoTent2 despite a 60-second pause before drape removal after drilling (P < .001, U = 0, n = 10, 12; P < .001, U = 2, n = 12, 12, respectively). However, particle density did not increase above baseline when a second suction and a pause before removal were both employed. CONCLUSIONS: Mastoidectomy without a barrier, even when a second suction was added, generated substantial 1- to 10-µm aerosols. During drilling, large amounts of aerosols above baseline levels were detected with OtoTent1 but not OtoTent2. For both drapes, a second suction was an effective mitigation strategy during drilling. Last, the combination of a second suction and a pause before removal prevented aerosol escape during the removal of either drape.


Subject(s)
Aerosols/adverse effects , COVID-19/epidemiology , Disease Transmission, Infectious/prevention & control , Ear Diseases/surgery , Mastoidectomy/methods , Otologic Surgical Procedures/standards , Personal Protective Equipment , Cadaver , Comorbidity , Ear Diseases/epidemiology , Humans , Mastoid/surgery , Otologic Surgical Procedures/methods , SARS-CoV-2
9.
Otolaryngol Head Neck Surg ; 163(5): 857-859, 2020 11.
Article in English | MEDLINE | ID: covidwho-618885

ABSTRACT

As a result of the COVID-19 pandemic, telemedicine has been thrust to the forefront of health care. Despite its inherent limitations, telemedicine offers many advantages to both patient and physician as an alternative to in-person evaluation of select patients. In the near term, telemedicine allows nonpandemic care to proceed while observing appropriate public health concerns to minimize the spread of pandemic pathogens. Thus, it behooves practitioners to use telemedicine consultations for common otolaryngology complaints. Assessment of the dizzy patient is well-suited to an algorithmic approach that can be adapted to a telemedicine setting. As best practices for telemedicine have yet to be defined, we present herein a practical approach to the history and limited physical examination of the dizzy patient in the telemedicine setting for the general otolaryngologist. Indeed, once the acute crisis has abated, we suspect that this approach will continue to be an effective way to manage dizzy patients.


Subject(s)
Algorithms , Betacoronavirus , Coronavirus Infections/complications , Dizziness/therapy , Otolaryngology/methods , Pneumonia, Viral/complications , Telemedicine/methods , COVID-19 , Coronavirus Infections/epidemiology , Dizziness/etiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
10.
Otol Neurotol ; 41(9): 1230-1239, 2020 10.
Article in English | MEDLINE | ID: covidwho-197201

ABSTRACT

BACKGROUND: COVID-19 has become a global pandemic with a dramatic impact on healthcare systems. Concern for viral transmission necessitates the investigation of otologic procedures that use high-speed drilling instruments, including mastoidectomy, which we hypothesized to be an aerosol-generating procedure. METHODS: Mastoidectomy with a high-speed drill was simulated using fresh-frozen cadaveric heads with fluorescein solution injected into the mastoid air cells. Specimens were drilled for 1-minute durations in test conditions with and without a microscope. A barrier drape was fashioned from a commercially available drape (the OtoTent). Dispersed particulate matter was quantified in segments of an octagonal test grid measuring 60 cm in radius. RESULTS: Drilling without a microscope dispersed fluorescent particles 360 degrees, with the areas of highest density in quadrants near the surgeon and close to the surgical site. Using a microscope or varying irrigation rates did not significantly reduce particle density or percent surface area with particulate. Using the OtoTent significantly reduced particle density and percent surface area with particulate across the segments of the test grid beyond 30 cm (which marked the boundary of the OtoTent) compared with the microscope only and no microscope test conditions (Kruskall-Wallis test, p = 0.0066). CONCLUSIONS: Mastoidectomy with a high-speed drill is an aerosol-generating procedure, a designation that connotes the potential high risk of viral transmission and need for higher levels of personal protective equipment. A simple barrier drape significantly reduced particulate dispersion in this study and could be an effective mitigation strategy in addition to appropriate personal protective equipment.


Subject(s)
Aerosols , Coronavirus Infections/prevention & control , Mastoid/surgery , Mastoidectomy/adverse effects , Occupational Exposure/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Cadaver , Fluorescein , Humans , Microscopy , Occupational Health , Operating Rooms , Personal Protective Equipment , SARS-CoV-2 , Surgeons , Temporal Bone/surgery
SELECTION OF CITATIONS
SEARCH DETAIL