Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-333396

ABSTRACT

Since its first occurance in January 2020 COVID-19 has spread globally. In order to contrain the COVID 19, China has adopted a zero-covid policy and consequently contributed to local economic crises in the form of slowed industry growth. Consequentily in the first Quarter of 2020, this crisis leads managerial sentiment to turn negative, resulting in decline in fixed-asset investments as well as capital expendituers. To deal with this uncertainty, managers can adjust cash holdings based on their overall senitment on the conditions of pandamic crisis. This paper considers COVID-19 pandemic as exogenous shock to understand the impact of managerial sentiment prior and since covid on corporate cash holding and investments. Excluding medical and financial sectors, Chinese listed firms‘ cashhoding and investment changes as well as managements‘ sentiment before the first quarter (Q1) 2020 and after Q1 2020. Our findings indicate that from Q1 2020 onwards firms with management’s optimistic sentiment hold more cash at the same time decrease their capital investment. While this effect is not significant prior COVID-19. Our results suggest that managerial sentiment since COVID-19 outbreak carries valuable infomration for investors to predict future cashholding and future investments. That is, managers with positive sentiment will accumulate cash to be ready enter investment opportunties while managers with negative sentiment and belief about future investments will reduce their cashholding. Practical and theoretical contributions as well as limitations of this paper are provided.

3.
Nat Methods ; 19(4): 381-383, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1784010
4.
Cell Reports ; : 110729, 2022.
Article in English | ScienceDirect | ID: covidwho-1783229

ABSTRACT

Summary The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein, but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.

5.
Sci Transl Med ; : eabn9243, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1741565

ABSTRACT

The Omicron variant of SARS-CoV-2 has been shown to evade neutralizing antibodies elicited by vaccination or prior infection. Despite the dramatic global spread of the Omicron variant, even among highly vaccinated populations, death rates have not increased concomitantly. These data suggest that immune mechanisms beyond antibody-mediated virus neutralization may protect against severe disease. In addition to neutralizing pathogens, antibodies contribute to control and clearance of infections through Fc-effector mechanisms. Here we probed the ability of vaccine-induced antibodies to drive Fc-effector activity against the Omicron variant using samples from individuals receiving one of three SARS-CoV-2 vaccines. Despite a substantial loss of IgM, IgA, and IgG binding to the Omicron variant Receptor Binding Domain (RBD) in samples from individuals receiving BNT162b2, mRNA-1273, and CoronaVac vaccines, stable binding was maintained against the full-length Omicron Spike protein. Compromised RBD binding IgG was accompanied by a loss of cross RBD-specific antibody Fcγ receptor (FcγR) binding in samples from individuals who received the CoronaVac vaccine, but RBD-specific FcγR2a and FcγR3a binding was preserved in recipients of mRNA vaccines. Conversely, Spike protein-specific antibodies exhibited persistent but reduced binding to FcγRs across all three vaccines, though higher binding was observed in samples from recipients of mRNA vaccines. This was associated with preservation of FcγR2a and FcγR3a binding antibodies and maintenance of Spike protein-specific antibody-dependent natural killer cell activating antibodies. Thus, despite the loss of Omicron neutralization, vaccine-induced Spike protein-specific antibodies continue to drive Fc-effector functions, suggesting a capacity for extra-neutralizing antibodies to contribute to disease control.

6.
Frontiers in bioengineering and biotechnology ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1733087

ABSTRACT

In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple, rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a classic method for nucleic acid detection with high sensitivity and specificity. However, this method still has essential limitations due to the dependence on thermal cycling, which requires costly equipment, professional technicians, and long turnover times. Currently, clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR method can be performed at physiological temperature, meaning that it is easy to assemble into point-of-care devices. Microfluidic chips hold promises to integrate sample processing and analysis on a chip, reducing the consumption of sample and reagent and increasing the detection throughput. This review provides an overview of recent advances in the development of CRISPR-based biosensing techniques and their perfect combination with microfluidic platforms. New opportunities and challenges for the improvement of specificity and efficiency signal amplification are outlined. Furthermore, their various applications in healthcare, animal husbandry, agriculture, and forestry are discussed.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325159

ABSTRACT

At least three months have been passed since the outbreak of the severe acute respiratory disease, COVID-19 in Wuhan city, China in December 2019, caused by the infection of a novel coronavirus, SARS-CoV-2. 1,2 . Due to its rapid spread throughout China and abroad, knowledge sharing for both its epidemiology and clinic manifestations is urgently need. Here we analyzed the clinical, molecular and immunological data from 326 confirmed cases of SARS-CoV-2 infection in Shanghai. Genomic sequences assembled from 112 quality samples together with uploaded sequences in Global Initiative on Sharing All Influenza Data (GISAID) showed a stable evolution and suggested two major lineages with differential exposure history during the earliest outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially the reduced CD4+ and CD8+ T cell counts upon admission, was predictive of disease progression. High level of IL-6 and IL-8 during treatment was observed in severe and critical patients and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such age, lymphocytopenia and its associated cytokine storm whereas viral genetic variation did not significantly affect the outcomes. This comprehensive analysis on the molecular, immunological and clinical data provides a panorama of the key determinants related to the disease outcomes which should be helpful for improving the current combat against this extremely aggressive pandemic.Authors Xiaonan Zhang, Yun Tan, Yun Ling, Gang Lu, Feng Liu, and Zhigang Yi contributed equally to this work.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323576

ABSTRACT

Background: Current research observing inconsistent associations of Corona Virus Disease 2019 (COVID-19) with heart failure (HF) are prone to bias based on reverse causality and residual confounding factors. Our aim was to apply a two-sample Mendelian randomization method to investigate whether COVID-19 has a causal effect on HF. Methods: : Twenty-nine single nucleotide polymorphisms (SNPs) were proposed as candidate instrumental variables (IVs). A total of 3,523 patients with COVID-19 and 36,634 control participants were included in the genome-wide meta-analysis. We analyzed the largest genome-wide association studies (GWAS) meta-analysis of heart failure in individuals of European ancestry consisting of 47,309 patients with HF and 930,014 controls. The inverse variance weighted (IVW), the Mendelian randomization-Egger (MR-Egger) regression, the simple mode (SM), weighted median, and weighted mode were utilized for the MR analysis to test the stability and a causal effect. Results: : The IVW, MR-Egger regression, SM, weighted median and weighted mode demonstrated there was no association between the genetically predicted COVID-19 infection and HF risk (OR, 1.004;95%CI, 0.994-1.014;P=0.467;OR, 1.008;95%CI, 0.996-1.019;P=0.218;OR, 0.968;95%CI, 0.924-1.015;P=0.186;OR, 1.001;95%CI, 0.988-1.014;P=0.881;OR, 1.001;95%CI, 0.989-1.014;P=0.836;respectively). Conclusion: This two-sample Mendelian randomization analysis provided no evidence to sustain the causality of COVID-19 on HF.

9.
Science ; 374(6573): 1353-1360, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1483980

ABSTRACT

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.


Subject(s)
Immune Evasion , Membrane Fusion , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibody Affinity , Antigens, Viral/immunology , Cell Line , Epitopes/immunology , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Multimerization , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology
10.
Nat Rev Mol Cell Biol ; 23(1): 3-20, 2022 01.
Article in English | MEDLINE | ID: covidwho-1454780

ABSTRACT

The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.


Subject(s)
SARS-CoV-2/physiology , Virus Internalization , Animals , Evolution, Molecular , Humans , Membrane Fusion , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/immunology , Viral Proteins/chemistry , Viral Proteins/metabolism
11.
Environ Sci Technol ; 55(19): 13400-13410, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1440444

ABSTRACT

Links between environmental conditions (e.g., meteorological factors and air quality) and COVID-19 severity have been reported worldwide. However, the existing frameworks of data analysis are insufficient or inefficient to investigate the potential causality behind the associations involving multidimensional factors and complicated interrelationships. Thus, a causal inference framework equipped with the structural causal model aided by machine learning methods was proposed and applied to examine the potential causal relationships between COVID-19 severity and 10 environmental factors (NO2, O3, PM2.5, PM10, SO2, CO, average air temperature, atmospheric pressure, relative humidity, and wind speed) in 166 Chinese cities. The cities were grouped into three clusters based on the socio-economic features. Time-series data from these cities in each cluster were analyzed in different pandemic phases. The robustness check refuted most potential causal relationships' estimations (89 out of 90). Only one potential relationship about air temperature passed the final test with a causal effect of 0.041 under a specific cluster-phase condition. The results indicate that the environmental factors are unlikely to cause noticeable aggravation of the COVID-19 pandemic. This study also demonstrated the high value and potential of the proposed method in investigating causal problems with observational data in environmental or other fields.


Subject(s)
Air Pollution , COVID-19 , Humans , Machine Learning , Pandemics , SARS-CoV-2
12.
Curr Opin Virol ; 50: 173-182, 2021 10.
Article in English | MEDLINE | ID: covidwho-1415336

ABSTRACT

The COVID-19 (coronavirus disease 2019) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to loss of human life in millions and devastating socio-economic consequences worldwide. The disease has created urgent needs for intervention strategies to control the crisis and meeting these needs requires a deep understanding of the structure-function relationships of viral proteins and relevant host factors. The trimeric spike (S) protein of the virus decorates the viral surface and is an important target for development of diagnostics, therapeutics and vaccines. Rapid progress in the structural biology of SARS-CoV-2 S protein has been made since the early stage of the pandemic, advancing our knowledge on the viral entry process considerably. In this review, we summarize our latest understanding of the structure of the SARS-CoV-2 S protein and discuss the implications for vaccines and therapeutics.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , COVID-19 Vaccines/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/physiology
13.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
14.
ACS Nano ; 15(9): 14022-14048, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1380890

ABSTRACT

Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.


Subject(s)
COVID-19 , Polyethylene Glycols , Humans , Liposomes , RNA, Viral , SARS-CoV-2
15.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1333275

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

16.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1294429

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
17.
Science ; 373(6555): 642-648, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1282051

ABSTRACT

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Subject(s)
COVID-19/virology , Immune Evasion , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Subunits/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1259548

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
19.
Med Sci Monit ; 27: e930853, 2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1181794

ABSTRACT

BACKGROUND COVID-19 has become a worldwide epidemic disease and is a public health crisis. We aim to provide evidence for clinical diagnosis and assessment of severity by analyzing patients' clinical data and early laboratory results and exploring the correlation between laboratory results and clinical classification. MATERIAL AND METHODS We enrolled 283 cases of suspected and diagnosed COVID-19 from 16 hospitals in Jiangsu Province from January to April 2020. The routine laboratory blood examinations, T lymphocyte subsets, and biochemical and coagulation function among different populations were contrasted by t test and chi-square (χ²) test. RESULTS Cough, fever, and dyspnea could be helpful to diagnose COVID-19 infection (P<0.05). Patients who were older or had comorbidities tended to become severe and critical cases. Among all the patients, the most obvious abnormal laboratory results were higher neutrophil count, CRP, total bilirubin, BUN, CRE, APTT, PT, and D-dimer, and lower blood platelet and lymphocyte count. CD3⁺ T cell, CD4⁺ T cell, and CD8⁺ T cell counts gradually decreased with exacerbation of the disease (P<0.05). CONCLUSIONS Cough and fever were the most common symptom. Patients with comorbidities were in more serious condition. The detection of inflammatory indexes, coagulation function, lymphocyte subsets, and renal function can help diagnose and assess the severity of COVID-19.


Subject(s)
COVID-19/diagnosis , Cough/epidemiology , Fever/epidemiology , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Blood Coagulation/immunology , COVID-19/blood , COVID-19/complications , COVID-19/epidemiology , China/epidemiology , Comorbidity , Cough/blood , Cough/immunology , Cough/virology , Female , Fever/blood , Fever/immunology , Fever/virology , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Inflammation/virology , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , T-Lymphocyte Subsets/immunology , Young Adult
20.
Science ; 372(6541): 525-530, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1138286

ABSTRACT

Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


Subject(s)
SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/virology , Cryoelectron Microscopy , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL