Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Biol Sci ; 17(14): 3954-3967, 2021.
Article in English | MEDLINE | ID: covidwho-1449161

ABSTRACT

Furin is a proprotein convertase that activates different kinds of regulatory proteins, including SARS-CoV-2 spike protein which contains an additional furin-specific cleavage site. It is essential in predicting cancer patients' susceptibility to SARS-CoV-2 and the disease outcomes due to varying furin expressions in tumor tissues. In this study, we analyzed furin's expression, methylation, mutation rate, functional enrichment, survival rate and COVID-19 outcomes in normal and cancer tissues using online databases, and our IHC. As a result, furin presented with biased expression profiles in normal tissues, showing 12.25-fold higher than ACE2 in the lungs. The furin expression in tumors were significantly increased in ESCA and TGCT, and decreased in DLBC and THYM, indicating furin may play critical mechanistic functions in COVID-19 viral entry into cells in these cancer patients. Line with furin over/downexpression, furin promoter hypo-/hyper-methylation may be the regulatory cause of disease and lead to pathogenesis of ESCA and THYM. Furthermore, presence of FURIN-201 isoform with functional domains (P_proprotein, Peptidase_S8 and S8_pro-domain) is highest in all cancer types in comparison to other isoforms, demonstrating its use in tumorigenesis and SARS-Cov-2 entry into tumor tissues. Furin mutation frequency was highest in UCES, and its mutation might elevate ACE2 expression in LUAD and UCEC, reduce ACE2 expression in COAD, elevate HSPA5 expression in PAAD, and elevate TMPRSS2 expression in BRCA. These results showed that furin mutations mostly increased expression of ACE2, HSPA5, and TMPRSS2 in certain cancers, indicating furin mutations might facilitate COVID-19 cell entry in cancer patients. In addition, high expression of furin was significantly inversely correlated with long overall survival (OS) in LGG and correlated with long OS in COAD and KIRC, indicating that it could be used as a favorable prognostic marker for cancer patients' survival. GO and KEGG demonstrated that furin was mostly enriched in genes for metabolic and biosynthetic processes, retinal dehydrogenase activity, tRNA methyltransferase activity, and genes involving COVID-19, further supporting its role in COVID-19 and cancer metabolism. Moreover, Cordycepin (CD) inhibited furin expression in a dosage dependent manner. Altogether, furin's high expression might not only implies increased susceptibility to SARS-CoV-2 and higher severity of COVID-19 symptoms in cancer patients, but also it highlights the need for cancer treatment and therapy during the COVID-19 pandemic. CD might have a potential to develop an anti-SARS-CoV-2 drug through inhibiting furin expression.


Subject(s)
Antineoplastic Agents/therapeutic use , COVID-19/virology , Deoxyadenosines/therapeutic use , Furin/metabolism , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , COVID-19/complications , Cell Line, Tumor , Deoxyadenosines/pharmacology , Disease Susceptibility , Furin/antagonists & inhibitors , Furin/genetics , Humans , Neoplasms/complications , Protein Isoforms/metabolism , Serine Endopeptidases/metabolism
2.
J Cell Mol Med ; 25(8): 4157-4165, 2021 04.
Article in English | MEDLINE | ID: covidwho-1091045

ABSTRACT

TMPRSS2 (OMIM: 602060) is a cellular protease involved in many physiological and pathological processes, and it facilitates entry of viruses such as SARS-CoV-2 into host cells. It is important to predict the prostate's susceptibility to SARS-CoV-2 infection in cancer patients and the disease outcome by assessing TMPRSS2 expression in cancer tissues. In this study, we conducted the expression profiles of the TMPRSS2 gene for COVID-19 in different normal tissues and PRAD (prostate adenocarcinoma) tumour tissues. TMPRSS2 is highly expressed in normal tissues including the small intestine, prostate, pancreas, salivary gland, colon, stomach, seminal vesicle and lung, and is increased in PRAD tissues, indicating that SARS-CoV-2 might attack not only the lungs and other normal organs, but also in PRAD cancer tissues. Hypomethylation of TMPRSS2 promoter may not be the mechanism for TMPRSS2 overexpression in PRAD tissues and PRAD pathogenesis. TMPRSS2 expresses eleven isoforms in PRAD tissues, with the TMPRSS2-001 isoform expressed highest and followed by TMPRSS2-201. Further isoform structures prediction showed that these two highly expressed isoforms have both SRCR_2 and Trypsin (Tryp_SPc) domains, which may be essential for TMPRSS2 functional roles for tumorigenesis and entry for SARS-CoV-2 in PRAD patients. Analyses of functional annotation and enrichment in TMPRSS2 showed that TMPRSS2 is mostly enriched in regulation of viral entry into host cells, protein processing and serine-type peptidase activity. TMPRSS2 is also associated with prostate gland cancer cell expression, different complex(es) formation, human influenza and carcinoma, pathways in prostate cancer, influenza A, and transcriptional misregulation in cancer. Altogether, even though high expression of TMPRSS2 may not be favourable for PRAD patient's survival, increased expression in these patients should play roles in susceptibility of the SARS-CoV-2 infection and clinical severity for COVID-19, highlighting the value of protective actions of PRAD cases by targeting or androgen-mediated therapeutic strategies in the COVID-19 pandemic.


Subject(s)
Adenocarcinoma/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Prostatic Neoplasms/genetics , SARS-CoV-2/isolation & purification , Serine Endopeptidases/genetics , Adenocarcinoma/metabolism , COVID-19/metabolism , COVID-19/virology , DNA Methylation , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Kaplan-Meier Estimate , Male , Promoter Regions, Genetic/genetics , Prostate/metabolism , Prostatic Neoplasms/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism
3.
Mol Biol Rep ; 47(6): 4383-4392, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-260333

ABSTRACT

The ACE2 gene is a receptor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) for COVID-19 (coronavirus disease 2019). To analyze the expression profiles and clinical significances for this gene in humans, RNA-seq data representing 27 different tissues were analyzed using NCBI; total RNA was extracted from different tissues of mouse and semi-quantitative reverse transcriptional-polymerase chain reaction (Q-RT-PCR) was carried out. Immunohistochemistry expression profiles in normal tissues and cancer tissues and TCGA survival analysis in renal and liver cancer were conducted. ACE2 was highly conserved in different species. In normal tissues, ACE2 expression distributions were organ-specific, mainly in the kidney, male testis and female breast, and cardiovascular and gastrointestinal systems. High level of expression in testis, cardiovascular and gastrointestinal system indicated that SARS-CoV-2 might not only attack the lungs, but also affect other organs, particularly the testes, thus it may severely damage male sexual development for younger male and lead to infertility in an adult male, if he contracted COVID-19. On the other side, high expression of ACE2 was correlated with increased survival rate in renal and liver cancer, indicating that ACE2 is a prognostic marker in both renal cancer and liver cancers. Thus, the ACE2 is a functional receptor for SARS-CoV-2 and has a potential anti-tumor role in cancer. Taken together, this study may not only provide potential clues for further medical pathogenesis of COVID-19 and male fertility, but also indicate the clinical significance of the role of the ACE2 gene in cancer.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Kidney Neoplasms/genetics , Liver Neoplasms/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Receptors, Virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Databases, Genetic , Female , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Kidney Neoplasms/virology , Liver/metabolism , Liver/pathology , Liver/virology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/virology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Glands, Human/virology , Mice , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2 , Sequence Analysis, RNA , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis , Testis/metabolism , Testis/pathology , Testis/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...