Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Host Microbe ; 29(2): 222-235.e4, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-987276

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.


Subject(s)
Alarmins/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Neutrophils/drug effects , SARS-CoV-2/drug effects , Animals , COVID-19/metabolism , COVID-19/virology , Disease Models, Animal , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Transcriptome , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL