Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Emerg Microbes Infect ; : 1-15, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1956544

ABSTRACT

The Omicron variant has led to a major fifth wave of COVID-19 in Hong Kong between January and May 2022. Here, we used seroprevalence to estimate the combined incidence of vaccination and SARS-CoV-2 infection, including subclinical infection which were not diagnosed at the acute stage. The overall seropositive rate of IgG against receptor binding domain (anti-RBD IgG) increased from 52.2% in December 2021 to 89.3% in May 2022. The level of anti-RBD IgG was lowest in the 0-9 and ≥80 year-old age groups in May 2022. The seropositive rate of antibody against ORF8, which reflects the rate of prior infection, was 23.4% in May 2022. Our data suggest that although most individuals were either vaccinated or infected after the fifth wave, children and older adults remain most vulnerable. Public health measures should target these vulnerable age groups in order to ameliorate the healthcare consequences of upcoming waves.

2.
Nat Commun ; 13(1): 3618, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1908176

ABSTRACT

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. We hypothesize that Hong Kong's explosive Omicron BA.2 outbreak in early 2022 could be explained by low herd immunity. Our seroprevalence study using sera collected from January to December 2021 shows a very low prevalence of neutralizing antibodies (NAb) against ancestral virus among older adults. The age group-specific prevalence of NAb generally correlates with the vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seroprevalence of NAb against Omicron variant is much lower than that against the ancestral virus. Our study suggests that this BA.2 outbreak and the exceptionally high case-fatality rate in the ≥80 year-old age group (9.2%) could be attributed to the lack of protective immunity in the population, especially among the vulnerable older adults, and that ongoing sero-surveillance is essential.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Disease Outbreaks , Hong Kong/epidemiology , Humans , Seroepidemiologic Studies
3.
Clin Infect Dis ; 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: SARS-CoV-2 can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related COVID-19 outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least three patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the RT-PCR-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by ELISA. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.

4.
Clin Infect Dis ; 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1852987

ABSTRACT

BACKGROUND: The SARS-CoV-2 Omicron variant, designated as a Variant of Concern(VOC) by the World Health Organization, carries numerous spike mutations which have are known to evade neutralizing antibodies elicited by COVID-19 vaccines. A deeper understanding of the susceptibility of Omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment. METHODS: Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the Omicron, Delta and Beta variants to sera from 25 BNT162b2 and 25 Coronavac vaccine recipients was determined using a live virus microneutralization assay. RESULTS: The Omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the Omicron variant HKU691 and HKU344-R346K, respectively, while none of the Coronavac recipients had detectable neutralizing antibody titer against either Omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers(GMT) of the Omicron variant isolates(5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus(229.4), and the GMT of both Omicron variant isolates were significantly lower than those of the Beta and Delta variants. There was no significant difference in the GMT between HKU691 and HKU344-R346K. CONCLUSIONS: Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or Coronavac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the Omicron variant may be associated with lower COVID-19 vaccine effectiveness.

5.
EBioMedicine ; 79: 103986, 2022 May.
Article in English | MEDLINE | ID: covidwho-1778094

ABSTRACT

BACKGROUND: SARS-CoV-2 Omicron variant evades immunity from past infection or vaccination and is associated with a greater risk of reinfection among recovered COVID-19 patients. We assessed the serum neutralizing antibody (NAb) activity against Omicron variant (Omicron NAb) among recovered COVID-19 patients with or without vaccination. METHODS: In this prospective cohort study with 135 recovered COVID-19 patients, we determined the serum NAb titers against ancestral virus or variants using a live virus NAb assay. We used the receiver operating characteristic analysis to determine the optimal cutoff for a commercially-available surrogate NAb assay. FINDINGS: Among recovered COVID-19 patients, the serum live virus geometric mean Omicron NAb titer was statistically significantly higher among BNT162b2 recipients compared to non-vaccinated individuals (85.4 vs 5.6,P < 0.0001). The Omicron seropositive rates in live virus NAb test (NAb titer ≥10) were statistically significantly higher among BNT162b2 (90.6% [29/32];P < 0.0001) or CoronaVac (36.7% [11/30]; P = 0.0115) recipients when compared with non-vaccinated individuals (12.3% [9/73]). Subgroup analysis of CoronaVac recipients showed that the Omicron seropositive rates were higher among individuals with two doses than those with one dose (85.7% vs 21.7%; P = 0.0045). For the surrogate NAb assay, a cutoff of 109.1 AU/ml, which is 7.3-fold higher than the manufacturer's recommended cutoff, could achieve a sensitivity and specificity of 89.5% and 89.8%, respectively, in detecting Omicron NAb. INTERPRETATION: Among individuals with prior COVID-19, one dose of BNT162b2 or two doses of CoronaVac could induce detectable serum Omicron NAb. Our result would be particularly important for guiding vaccine policies in countries with COVID-19 vaccine shortage. FUNDING: Health and Medical Research Fund, Richard and Carol Yu, Michael Tong (see acknowledgments for full list).


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Blocking , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Prospective Studies , SARS-CoV-2
6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332139

ABSTRACT

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. In this serosurveillance study, older adults show much lower seropositive rates of neutralizing antibody (NAb) against ancestral virus than the younger population. The increase in NAb seopositive rate generally follows the population vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seropositive rates of NAb against Omicron variant are much lower than those against the ancestral virus. During the fifth wave of COVID-19 in Hong Kong which is dominated by Omicron sublineage BA.2, the case-fatality rate is exceptionally high in the ≥80 year-old age group (9.2%). Our study suggests that the severe BA.2 outbreak in Hong Kong can be attributed by the lack of protective immunity in the population, especially among the vulnerable older adults, and highlights the importance of continual surveillance of protective immunity against emerging variants of SARS-CoV-2.

8.
Clin Infect Dis ; 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1707925

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with mutations at the spike protein receptor binding domain (RBD) have reduced susceptibility to antibody neutralization, and have been classified as Variants of Concern (VOCs) or Variants of Interest (VOIs). Here, we systematically compared the neutralization susceptibility and RBD binding of different VOCs/VOIs, including B.1.617.1 (kappa variant) and P.3 (theta variant) which were first detected in India and the Philippines, respectively. METHODS: The neutralization susceptibility of the VOCs/VOIs (B.1.351, B.1.617.1 and P.3) and a non-VOC/VOI without RBD mutations (B.1.36.27) to convalescent sera from COVID-19 patients or BNT162b2 vaccinees was determined using a live virus microneutralization (MN) assay. Serum IgG binding to wild type and mutant RBDs were determined using an enzyme immunoassay. RESULTS: The geometric mean neutralization titers (GMT) of B.1.351, P.3, and B.1.617.1 were significantly lower than that of B.1.36.27 for COVID-19 patients infected with non-VOCs/VOIs (3.4-5.7-fold lower) or individuals who have received 2 doses of BNT162b2 vaccine (4.4-7.3-fold lower). The GMT of B.1.351 or P.3 were lower than that of B.1.671.1. For the 4 patients infected with B.1.351 or B.1.617.1, the MN titer was highest for their respective lineage. RBD with E484K or E484Q mutation, either alone or in combination with other mutations, showed greatest reduction in serum IgG binding. CONCLUSION: P.3 and B.1.617.1 escape serum neutralization induced by natural infection or vaccine. Infection with one variant do not confer cross protection for heterologous lineages. Immunogenicity testing for second generation COVID-19 vaccines should include multiple variant and "non-variant" strains.

9.
SSRN;
Preprint in English | SSRN | ID: ppcovidwho-326165

ABSTRACT

Background: SARS-CoV-2 Omicron variant evades immunity from past infection or vaccination and is associated with a greater risk of reinfection among recovered COVID-19 patients. We assessed the serum neutralizing antibody (NAb) activity against Omicron variant (Omicron NAb) among recovered COVID-19 patients with or without vaccination. Methods: In this prospective cohort study with 135 recovered COVID-19 patients, we determined the serum NAb titers against ancestral virus or variants using a live virus NAb assay. We used the receiver operating characteristic analysis to determine the optimal cutoff for a commercially-available surrogate NAb assay. Findings: Among recovered COVID-19 patients, the serum live virus geometric mean Omicron NAb titer was statistically significantly higher among BNT162b2 recipients compared to non-vaccinated individuals (85.4 vs 5.6, P<0.0001). The Omicron seropositive rates in live virus NAb test (NAb titer ≥10) were statistically significantly higher among BNT162b2 (93.5% [29/32];P<0.0001) or CoronaVac (36.7% [11/30];P=0.0115) recipients when compared with non-vaccinated individuals (12.3% [9/73]). Subgroup analysis of CoronaVac recipients showed that the Omicron seropositive rates were higher among individuals with two doses than those with one dose (85.7% vs 21.7%;P=0.0045). For the surrogate NAb assay, a cutoff of 109.1 AU/ml, which is 7.3-fold higher than the manufacturer’s recommended cutoff, could achieve a sensitivity and specificity of 89.5% and 89.8%, respectively, in detecting Omicron NAb. Interpretation: Among individuals with prior COVID-19, one dose of BNT162b2 and two doses of CoronaVac could induce detectable serum Omicron NAb. Our result would be particularly important for guiding vaccine policies in countries with COVID-19 vaccine shortage. Funding Information: This work was supported by Health and Medical Research Fund, the Food and Health Bureau, The Government of the Hong Kong Special Administrative Region (Ref no.: COVID190124 and COVID1903010 [Project 1]), and donations of Richard Yu and Carol Yu, Shaw Foundation Hong Kong, Michael Seak-Kan Tong, May Tam Mak Mei Yin, Lee Wan Keung Charity Foundation Limited, Hong Kong Sanatorium & Hospital, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Chan Yin Chuen Memorial Charitable Foundation, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, the Jessie & George Ho Charitable Foundation, Kai Chong Tong, Tse Kam Ming Laurence, Foo Oi Foundation Limited, Betty Hing-Chu Lee, and Ping Cham So. Declaration of Interests: KYY and KKWT report collaboration with SinoVac and Sinopharm. Other authors declare no conflict of interest.

10.
Emerg Microbes Infect ; 11(1): 543-547, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1655963

ABSTRACT

The novel SARS-CoV-2 Omicron variant may increase the risk of re-infection and vaccine breakthrough infections as it possesses key mutations in the spike protein that affect neutralizing antibody response. Most studies on neutralization susceptibility were conducted using specimens from adult COVID-19 patients or vaccine recipients. However, since the paediatric population has an antibody response to SARS-CoV-2 infection that is distinct from the adult population, it is critical to assess the neutralization susceptibility of pediatric serum specimens. This study compared the neutralization susceptibility of serum specimens collected from 49 individuals of <18 years old, including 34 adolescent BNT162b2 (Pfizer-BioNTech) vaccine recipients, and 15 recovered COVID-19 patients aged between 2 and 17. We demonstrated that only 38.2% of BNT162b2 vaccine recipients and 26.7% of recovered COVID-19 patients had their serum neutralization titre at or above the detection threshold in our live virus microneutralization assay. Furthermore, the neutralizing antibody titer against the Omicron variant was substantially lower than those against the ancestral virus or the Beta variant. Our results suggest that vaccine recipients and COVID-19 patients in the pediatric age group will likely be more susceptible to vaccine breakthrough infections or reinfections due to the Omicron variant than previous variants.


Subject(s)
COVID-19 , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Child , Child, Preschool , Humans , SARS-CoV-2 , Vaccination
11.
Emerg Microbes Infect ; 11(1): 277-283, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585239

ABSTRACT

The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Virus Replication , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chlorocebus aethiops , Chloroquine/pharmacology , Endocytosis/drug effects , Esters/pharmacology , Guanidines/pharmacology , Humans , Immune Evasion , Lung Neoplasms/pathology , Macrolides/pharmacology , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Vero Cells , Virus Cultivation , Virus Internalization/drug effects , Whole Genome Sequencing
12.
Diagnostics (Basel) ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-1542450

ABSTRACT

OBJECTIVES: The emergence of SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of vaccines and are associated with a rebound in the number of COVID-19 cases globally. These variants contain mutations at the spike (S) protein receptor binding site (RBD), which affect antibody binding. Current commercially available antibody assays were developed before the VOCs emerged. It is unclear whether the levels of these commercially available antibody assays can predict the neutralizing antibody titers against the VOCs. In this study, we sought to determine the correlation between the binding antibody concentration and microneutralization antibody titer against the beta variant. METHODS: This study included 58 COVID-19 patients. The concentrations of IgG against the SARS-CoV-2 spike protein RBD and nucleocapsid (N) protein were measured using the Abbott SARS-CoV-2 IgG II Quant assay and the SARS-CoV-2 IgG assay, respectively. The neutralization antibody titer against the wild type lineage A SARS-CoV-2 and against the beta variant (B.1.351) was determined using a conventional live virus neutralization test. RESULTS: The geometric mean MN titer (GMT) against the beta variant was significantly lower than that against the wild type lineage A virus (5.6 vs. 47.3, p < 0.0001). The anti-RBD IgG had a better correlation with the neutralizing antibody titer than that of the anti-N IgG assay against the wild type lineage A virus (Spearman rho, 0.5901 vs. 0.3827). However, the correlation between the anti-RBD or the anti-N IgG and the MN titer against the beta variant was poor. CONCLUSIONS: Currently available commercial antibody assays may not predict the level of neutralizing antibodies against the variants. A new generation of antibody tests specific for variants are required.

14.
EBioMedicine ; 71: 103544, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363987

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with spike receptor binding domain (RBD) N501Y mutation have spread globally. We evaluated the impact of N501Y on neutralizing activity of COVID-19 convalescent sera and on anti-RBD IgG assays. METHODS: The susceptibility to neutralization by COVID-19 patients' convalescent sera from Hong Kong were compared between two SARS-CoV-2 isolates (B117-1/B117-2) from the α variant with N501Y and 4 non-N501Y isolates. The effect of N501Y on antibody binding was assessed. The performance of commercially-available IgG assays was determined for patients infected with N501Y variants. FINDINGS: The microneutralization antibody (MN) titers of convalescent sera from 9 recovered COVID-19 patients against B117-1 (geometric mean titer[GMT],80; 95% CI, 47-136) were similar to those against the non-N501Y viruses. However, MN titer of these serum against B117-2 (GMT, 20; 95% CI, 11-36) was statistically significantly reduced when compared with non-N501Y viruses (P < 0.01; one-way ANOVA). The difference between B117-1 and B117-2 was confirmed by testing 60 additional convalescent sera. B117-1 and B117-2 differ by only 3 amino acids (nsp2-S512Y, nsp13-K460R, spike-A1056V). Enzyme immunoassay using 272 convalescent sera showed reduced binding of anti-RBD IgG to N501Y or N501Y-E484K-K417N when compared with that of wild-type RBD (mean difference: 0.1116 and 0.5613, respectively; one-way ANOVA). Of 7 anti-N-IgG positive sera from patients infected with N501Y variants (collected 9-14 days post symptom onset), 6 (85.7%) tested negative for a commercially-available anti-S1-IgG assay. FUNDING: Richard and Carol Yu, Michael Tong, and the Government Consultancy Service (see acknowledgments for full list). INTERPRETATION: We highlighted the importance of using a panel of viruses within the same lineage to determine the impact of virus variants on neutralization. Furthermore, clinicians should be aware of the potential reduced sensitivity of anti-RBD IgG assays.


Subject(s)
COVID-19/therapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/ultrastructure , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunization, Passive , Male , Middle Aged , Mutation/genetics , Neutralization Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
15.
Clin Infect Dis ; 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1324612

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with mutations at the spike protein receptor binding domain (RBD) have reduced susceptibility to antibody neutralization, and have been classified as Variants of Concern (VOCs) or Variants of Interest (VOIs). Here, we systematically compared the neutralization susceptibility and RBD binding of different VOCs/VOIs, including B.1.617.1 (kappa variant) and P.3 (theta variant) which were first detected in India and the Philippines, respectively. METHODS: The neutralization susceptibility of the VOCs/VOIs (B.1.351, B.1.617.1 and P.3) and a non-VOC/VOI without RBD mutations (B.1.36.27) to convalescent sera from COVID-19 patients or BNT162b2 vaccinees was determined using a live virus microneutralization (MN) assay. Serum IgG binding to wild type and mutant RBDs were determined using an enzyme immunoassay. RESULTS: The geometric mean neutralization titers (GMT) of B.1.351, P.3, and B.1.617.1 were significantly lower than that of B.1.36.27 for COVID-19 patients infected with non-VOCs/VOIs (3.4-5.7-fold lower) or individuals who have received 2 doses of BNT162b2 vaccine (4.4-7.3-fold lower). The GMT of B.1.351 or P.3 were lower than that of B.1.671.1. For the 4 patients infected with B.1.351 or B.1.617.1, the MN titer was highest for their respective lineage. RBD with E484K or E484Q mutation, either alone or in combination with other mutations, showed greatest reduction in serum IgG binding. CONCLUSION: P.3 and B.1.617.1 escape serum neutralization induced by natural infection or vaccine. Infection with one variant do not confer cross protection for heterologous lineages. Immunogenicity testing for second generation COVID-19 vaccines should include multiple variant and "non-variant" strains.

16.
Lancet Microbe ; 1(3): e111-e118, 2020 07.
Article in English | MEDLINE | ID: covidwho-940890

ABSTRACT

BACKGROUND: The role of subclinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in perpetuating the COVID-19 pandemic is unknown because population seroprevalence data are absent. We aimed to establish the sensitivity and specificity of our enzyme immunoassay and microneutralisation assay, and the seroprevalence of SARS-CoV-2 in Hong Kong before and after the pandemic, as well as in Hong Kong residents evacuated from Hubei province, China. METHODS: We did a multicohort study in a hospital and university in Hong Kong. We evaluated the sensitivity of our enzyme immunoassay and microneutralisation assay with RT-PCR data from patients positive for SARS-CoV-2 and the specificity of our enzyme immunoassay and microneutralisation assay with archived serum samples collected before 2019. We compared the seropositivity of the general population of Hong Kong before and after the pandemic had begun, and determined the seropositivity of Hong Kong residents evacuated from Hubei province, China, in March, 2020. FINDINGS: Between Feb 26 and March 18, 2020, we assessed RT-PCR samples from 45 patients who had recovered from COVID-19 to establish the sensitivity of our enzyme immunoassay and microneutralisation assay. To establish the specificity of these assays, we retrieved archived serum. The sensitivity was 91·1% (41 of 45 [95% CI 78·8-97·5]) for the microneutralisation assay, 57·8% (26 of 45 [42·2-72·3]) for anti-nucleoprotein IgG, 66·7% (30 of 45 [51·1-80·0]) for anti-spike protein receptor binding domain (RBD) IgG, and 73·3% (33 of 45 [58·1-85·4]) for enzyme immunoassay (either positive for anti-nucleoprotein or anti-RBD IgG). The specificity was 100% (152 of 152 [95% CI 97·6-100·0]) for both the enzyme immunoassay and microneutralisation assay. Among the Hong Kong general population, 53 (2·7%) of 1938 were enzyme immunoassay positive, but of those who were positive, all 53 were microneutralisation negative, and no significant increase was seen in the seroprevalence between April 12, 2018, and Feb 13, 2020. Among asymptomatic Hubei returnees, 17 (4%) of 452 were seropositive with the enzyme immunoassay or the microneutralisation assay, with 15 (88%) of 17 seropositive with the microneutralisation assay, and two familial clusters were identified. INTERPRETATION: Our serological data suggest that SARS-CoV-2 is a new emerging virus. The seropositivity rate in Hubei returnees indicates that RT-PCR-confirmed patients only represent a small proportion of the total number of cases. The low seroprevalence suggests that most of the Hong Kong and Hubei population remain susceptible to COVID-19. Future waves of the outbreak are inevitable without a vaccine or antiviral prophylaxis. The role of age-related cross reactive non-neutralising antibodies in the pathogenesis of COVID-19 warrants further investigation. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, Shaw Foundation (Hong Kong), Michael Tong, Marina Lee, and the Government Consultancy Service (see acknowledgments for full list).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , China/epidemiology , Hong Kong/epidemiology , Humans , Immunoglobulin G , Pandemics , Seroepidemiologic Studies
17.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-760933

ABSTRACT

Currently available COVID-19 antibody tests using enzyme immunoassay (EIA) or immunochromatographic assay have variable sensitivity and specificity. Here, we developed and evaluated a novel microsphere-based antibody assay (MBA) for detecting immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP) and spike protein receptor binding domain (RBD). The seropositive cutoff value was set using a cohort of 294 anonymous serum specimens collected in 2018. The specificity was assessed using serum specimens collected from organ donors or influenza patients before 2020. Seropositive rate was determined among COVID-19 patients. Time-to-seropositivity and signal-to-cutoff (S/CO) ratio were compared between MBA and EIA. MBA had a specificity of 100% (93/93; 95% confidence interval (CI), 96-100%) for anti-NP IgG, 98.9% (92/93; 95% CI 94.2-100%) for anti-RBD IgG. The MBA seropositive rate for convalescent COVID-19 patients was 89.8% (35/39) for anti-NP IgG and 79.5% (31/39) for anti-RBD IgG. The time-to-seropositivity was shorter with MBA than EIA. MBA could better differentiate between COVID-19 patients and negative controls with higher S/CO ratio for COVID-19 patients, lower S/CO ratio with negative controls and fewer specimens in the equivocal range. MBA is robust, simple and is suitable for clinical microbiology laboratory for the accurate determination of anti-SARS-CoV-2 antibodies for diagnosis, serosurveillance, and vaccine trials.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/blood , Nucleocapsid Proteins/immunology , Pneumonia, Viral/blood , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Female , Humans , Infant , Male , Microspheres , Middle Aged , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Sensitivity and Specificity , Serologic Tests/standards
19.
Emerg Microbes Infect ; 9(1): 1664-1670, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-630769

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a wide spectrum of disease severity from mild upper respiratory symptoms to respiratory failure. The role of neutralizing antibody (NAb) response in disease progression remains elusive. This study determined the seroprevalence of 733 non-COVID-19 individuals from April 2018 to February 2020 in the Hong Kong Special Administrative Region and compared the neutralizing antibody (NAb) responses of eight COVID-19 patients admitted to the intensive care unit (ICU) with those of 42 patients not admitted to the ICU. We found that NAb against SARS-CoV-2 was not detectable in any of the anonymous serum specimens from the 733 non-COVID-19 individuals. The peak serum geometric mean NAb titer was significantly higher among the eight ICU patients than the 42 non-ICU patients (7280 [95% confidence interval (CI) 1468-36099]) vs (671 [95% CI, 368-1223]). Furthermore, NAb titer increased significantly at earlier infection stages among ICU patients than among non-ICU patients. The median number of days to reach the peak Nab titers after symptoms onset was shorter among the ICU patients (17.6) than that of the non-ICU patients (20.1). Multivariate analysis showed that oxygen requirement and fever during admission were the only clinical factors independently associated with higher NAb titers. Our data suggested that SARS-CoV-2 was unlikely to have silently spread before the COVID-19 emergence in Hong Kong. ICU patients had an accelerated and augmented NAb response compared to non-ICU patients, which was associated with disease severity. Further studies are required to understand the relationship between high NAb response and disease severity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Adult , Aged , COVID-19 , Cells, Cultured , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL