Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comput Biol Med ; 150: 106055, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2177825

ABSTRACT

Despite global vaccination efforts, COVID-19 breakthrough infections caused by variant virus continue to occur frequently, long-term sequelae of COVID-19 infection like neuronal dysfunction emerge as a noteworthy issue. Neuroimmune disorder induced by Inflammatory factor storm was considered as a possible reason, however, little was known about the functional factors affecting neuroimmune response to this virus. Here, using medial prefrontal cortex single cell data of COVID-19 patients, expression pattern analysis indicated that some immune-related pathway genes expressed specifically, including genes associated with T cell receptor, TNF signaling in microglia and Cytokine-cytokine receptor interaction and HIF-1 signaling pathway genes in astrocytes. Besides the well-known immune-related cell type microglia, we also observed immune-related factors like IL17D, TNFRSF1A and TLR4 expressed in Astrocytes. Based on the ligand-receptor relationship of immune-related factors, crosstalk landscape among cell clusters were analyzed. The findings indicated that astrocytes collaborated with microglia and affect excitatory neurons, participating in the process of immune response and neuronal dysfunction. Moreover, subset of astrocytes specific immune factors (hinged neuroimmune genes) were proved to correlate with Covid-19 infection and ventilator-associated pneumonia using multi-tissue RNA-seq and scRNA-seq data. Function characterization clarified that hinged neuroimmune genes were involved in activation of inflammation and hypoxia signaling pathways, which could lead to hyper-responses related neurological sequelae. Finally, a risk model was constructed and testified in RNA-seq and scRNA data of peripheral blood.

2.
J Clin Lab Anal ; 36(6): e24479, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1826009

ABSTRACT

BACKGROUND: SARS-CoV-2 has spread worldwide causing more than 400 million people with virus infections since early 2020. Currently, the existing vaccines targeting the spike glycoprotein (S protein) of SARS-CoV-2 are facing great challenge from the infection of SARS-CoV-2 virus and its multiple S protein variants. Thus, we need to develop a new generation of vaccines to prevent infection of the SARS-CoV-2 variants. Compared with the S protein, the nucleocapsid protein (N protein) of SARS-CoV-2 is more conservative and less mutations, which also plays a vital role in viral infection. Therefore, the N protein may have the great potential for developing new vaccines. METHODS: The N protein of SARS-CoV-2 was recombinantly expressed and purified in Escherichia coli. Western Blot and ELISA assays were used to demonstrate the immunoreactivity of the recombinant N protein with the serum of 22 COVID-19 patients. We investigated further the response of the specific serum antibodies and cytokine production in BALB/c mice immunized with recombinant N protein by Western Blot and ELISA. RESULTS: The N protein had good immunoreactivity and the production of IgG antibody against N protein in COVID-19 patients was tightly correlated with disease severity. Furthermore, the N protein was used to immunize BALB/c mice to have elicited strong immune responses. Not only high levels of IgG antibody, but also cytokine-IFN-γ were produced in the N protein-immunized mice. Importantly, the N protein immunization induced a high level of IgM antibody produced in the mice. CONCLUSION: SARS-CoV-2 N protein shows a great big bundle of potentiality for developing a new generation of vaccines in fighting infection of SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunoglobulin G , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
3.
Front Pediatr ; 8: 542, 2020.
Article in English | MEDLINE | ID: covidwho-797025

ABSTRACT

Importance: COVID-19 has become a worldwide pandemic. Many countries have reported cases of infection in children and newborns, and there is a trend of significantly increasing infections among these populations. Therefore, it is important to provide advice and guidance for the prevention and control of COVID-19 in children. Observations: Children are as susceptible to SARS-CoV-2 infection as adults. The manifestations in children are atypical, and children are much less likely to have critical cases. If children are infected, they may play an important role in the spread of SARS-CoV-2 because their symptoms are less obvious and less likely to be detected. To prevent COVID-19 from spreading among children, efforts to prevent, and control the infection should be increased by controlling the source of infection, blocking the route of transmission and protecting the susceptible population. Conclusions and Relevance: The early identification of the COVID-19 in children and the protection of families are important measures to prevent the continued spread of SARS-CoV-2.

4.
Front Med (Lausanne) ; 7: 347, 2020.
Article in English | MEDLINE | ID: covidwho-643256

ABSTRACT

Background: Liver injury commonly occurs in patients with COVID-19. There is limited data describing the course of liver injury occurrence in patients with different disease severity, and the causes and risk factors are unknown. We aim to investigate the incidence, characteristics, risk factors, and clinical outcomes of liver injury in patients with COVID-19. Methods: This retrospective observational study was conducted in three hospitals (Zhejiang, China). From January 19, 2020 to February 20, 2020, patients confirmed with COVID-19 (≥18 years) and without liver injury were enrolled and divided into non-critically ill and critically ill groups. The incidence and characteristics of liver injury were compared between the two groups. Demographics, clinical characteristics, treatments, and treatment outcomes between patients with or without liver injury were compared within each group. The multivariable logistic regression model was used to explore the risk factors for liver injury. Results: The mean age of 131 enrolled patients was 51.2 years (standard deviation [SD]: 16.1 years), and 70 (53.4%) patients were male. A total of 76 patients developed liver injury (mild, 40.5%; moderate, 15.3%; severe, 2.3%) with a median occurrence time of 10.0 days. Critically ill patients had higher and earlier occurrence (81.5 vs. 51.9%, 12.0 vs. 5.0 days; p < 0.001), greater injury severity (p < 0.001), and slower recovery (50.0 vs. 61.1%) of liver function than non-critically ill patients. Multivariable regression showed that the number of concomitant medications (odds ratio [OR]: 1.12, 95% confidence interval [CI]: 1.05-1.21) and the combination treatment of lopinavir/ritonavir and arbidol (OR: 3.58, 95% CI: 1.44-9.52) were risk factors for liver injury in non-critically ill patients. The metabolism of arbidol can be significantly inhibited by lopinavir/ritonavir in vitro (p < 0.005), which may be the underlying cause of drug-related liver injury. Liver injury was related to increased length of hospital stay (mean difference [MD]: 3.2, 95% CI: 1.3-5.2) and viral shedding duration (MD: 3.0, 95% CI: 1.0-4.9). Conclusions: Critically ill patients with COVID-19 suffered earlier occurrence, greater injury severity, and slower recovery from liver injury than non-critically ill patients. Drug factors were related to liver injury in non-critically ill patients. Liver injury was related to prolonged hospital stay and viral shedding duration in patients with COVID-19. Clinical Trial Registration: World Health Organization International Clinical Trials Registry Platform, ChiCTR2000030593. Registered March 8, 2020.

SELECTION OF CITATIONS
SEARCH DETAIL