Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Computers, Environment and Urban Systems ; 88:101629, 2021.
Article in English | ScienceDirect | ID: covidwho-1174184


Social sensing is an analytical method to study the interaction between human and space through extracting reliable information from massive volunteered information data. During the ongoing COVID-19 pandemic, there are a large number of Internet social sensing data. However, most of them lack geographic attribute. In order to resolve this problem, this paper proposes a convolutional neural network geographic classification model based on keyword extraction and synonym substitution (KE-CNN) which could determine the geographic attribute by extracting the semantic features from text data. Besides, we realizes the non-contact pandemic social sensing and construct the co-word complex network by capturing the spatiotemporal behaviour of a large number of people. Our research found that (1) mining co-word network can obtain most public opinion information of pandemic events, (2) KE-CNN model improves the accuracy by 5%–15% compared with the traditional machine learning method. Through this method, we could effectively establish medical, catering, railway station, education and other types of text feature set, supplement the missing spatial data tags, and achieve a good geographical seamless social sensing.

Int J Environ Res Public Health ; 17(24)2020 12 10.
Article in English | MEDLINE | ID: covidwho-970235


The online public opinion is the sum of public views, attitudes and emotions spread on major public health emergencies through the Internet, which maps out the scope of influence and the disaster situation of public health events in real space. Based on the multi-source data of COVID-19 in the context of a global pandemic, this paper analyzes the propagation rules of disasters in the coupling of the spatial dimension of geographic reality and the dimension of network public opinion, and constructs a new gravity model-complex network-based geographic propagation model of the evolution chain of typical public health events. The strength of the model is that it quantifies the extent of the impact of the epidemic area on the surrounding area and the spread of the epidemic, constructing an interaction between the geographical reality dimension and online public opinion dimension. The results show that: The heterogeneity in the direction of social media discussions before and after the "closure" of Wuhan is evident, with the center of gravity clearly shifting across the Yangtze River and the cyclical changing in public sentiment; the network model based on the evolutionary chain has a significant community structure in geographic space, divided into seven regions with a modularity of 0.793; there are multiple key infection trigger nodes in the network, with a spatially polycentric infection distribution.

COVID-19/epidemiology , Pandemics , Public Opinion , Social Media , China , Humans