Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Sci Transl Med ; : eabn1252, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1784766

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy with a homo-trimeric version of the 75-residue angiotensin converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. In the cryo-electron microscopy structure, TRI2 formed a tripod on top of the spike protein which engaged all three receptor binding domains (RBDs) simultaneously as in the design model. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than that of monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies and native receptor traps. By comparison, the designed proteins have resistance to viral escape and antigenic drift by construction, precisely tuned avidity, and greatly reduced chance of autoimmune responses.

2.
Nat Commun ; 13(1): 1638, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1764180

ABSTRACT

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
3.
Med (N Y) ; 3(3): 188-203.e4, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1740045

ABSTRACT

Background: Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention or therapy. The pre-exposure prophylactic efficacy of neutralizing antibodies that are engineered with mutations to extend their persistence in human serum and the neutralizing antibody titer in serum required for protection against SARS-CoV-2 infection remain poorly characterized. Methods: The Fc region of two neutralizing mAbs (COV2-2130 and COV2-2381) targeting non-overlapping epitopes on the receptor binding domain of SARS-CoV-2 spike protein was engineered to extend their persistence in humans and reduce interactions with Fc gamma receptors. We assessed protection by individual antibodies or a combination of the two antibodies (designated ADM03820) given prophylactically by an intravenous or intramuscular route in a non-human primate (NHP) model of SARS-CoV-2 infection. Findings: Passive transfer of individual mAbs or ADM03820 conferred virological protection in the NHP respiratory tract in a dose-dependent manner, and ADM03820 potently neutralized SARS-CoV-2 variants of concern in vitro. We defined a protective serum-neutralizing antibody titer and concentration in NHPs for passively transferred human antibodies that acted by direct viral neutralization. Conclusions: In summary, we demonstrate that neutralizing antibodies with extended half-life and lacking Fc-mediated effector functions are efficient for pre-exposure prophylaxis of SARS-CoV-2 infection in NHPs. These results support clinical development of ADM03820 for COVID-19 prevention. Funding: This research was supported by a contract from the JPEO-CBRND (W911QY-20-9-003, 20-05); the Joint Sciences and Technology Office and Joint Program Executive Office (MCDC-16-01-002 JSTO, JPEO); a DARPA grant (HR0011-18-2-0001); an NIH grant (R01 AI157155); and the 2019 Future Insight Prize from Merck KGaA.

4.
Sci Transl Med ; 14(630): eabm3302, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1691437

ABSTRACT

Although mRNA vaccines encoding the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevent COVID-19, the emergence of new viral variants jeopardizes their efficacy. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike protein) or modified (mRNA-1273.351, designed for B.1.351 spike protein) Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Mice were immunized with either high-dose or low-dose formulations of the mRNA vaccines, where low-dose vaccination modeled suboptimal immune responses. Immunization with formulations at either dose induced neutralizing antibodies in serum against ancestral SARS-CoV-2 WA1/2020 and several virus variants, although serum titers were lower against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. However, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, showed breakthrough lung infections with B.1.617.2 and development of pneumonia in K18-hACE2 mice. Thus, in individuals with reduced immunity after mRNA vaccination, breakthrough infection and disease may occur with some SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mice , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic
5.
Sci Transl Med ; 14(632): eabi5735, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1691438

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.


Subject(s)
COVID-19 , Nanoparticles , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Ferritins , Humans , Immunity , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
J Virol ; 96(1): e0151121, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1621995

ABSTRACT

The development of mouse models for coronavirus disease 2019 (COVID-19) has enabled testing of vaccines and therapeutics and defining aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2 Tg) expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 knock-in (KI) mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extrapulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to the WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remain uncertain, we evaluated the impact of the naturally occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2 Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans, as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here, we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Lung/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , Disease Models, Animal , Gene Expression , Gene Knock-In Techniques , Humans , Inflammation , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Viral Load , Virus Replication
7.
Med (N Y) ; 2(12): 1327-1341.e4, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1568933

ABSTRACT

BACKGROUND: Although vaccines effectively prevent coronavirus disease 2019 (COVID-19) in healthy individuals, they appear to be less immunogenic in individuals with chronic inflammatory disease (CID) or receiving chronic immunosuppression therapy. METHODS: Here we assessed a cohort of 77 individuals with CID treated as monotherapy with chronic immunosuppressive drugs for antibody responses in serum against historical and variant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses after immunization with the BNT162b2 mRNA vaccine. FINDINGS: Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with tumor necrosis factor alpha (TNF-α) inhibitors (TNFi), and this pattern appeared to be worse against the B.1.617.2 delta virus. Within 5 months of vaccination, serum neutralizing titers of all TNFi-treated individuals tested fell below the presumed threshold correlate for antibody-mediated protection. However, TNFi-treated individuals receiving a third mRNA vaccine dose boosted their serum neutralizing antibody titers by more than 16-fold. CONCLUSIONS: Vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) will likely be required to prevent SARS-CoV-2 infection in this susceptible population. FUNDING: This study was supported by grants and contracts from the NIH (R01 AI157155, R01AI151178, and HHSN75N93019C00074; NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contracts HHSN272201400008C and 75N93021C00014; and Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/drug therapy , COVID-19 Vaccines/therapeutic use , Hepatitis Delta Virus , Humans , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha , Vaccines, Synthetic
8.
iScience ; 25(1): 103602, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1561444

ABSTRACT

The COVID-19 pandemic revealed an urgent need for rapid profiling of neutralizing antibody responses and development of antibody therapeutics. The current Food and Drug Administration-approved serological tests do not measure antibody-mediated viral neutralization, and there is a need for standardized quantitative neutralization assays. We report a high-throughput two-step profiling approach for identifying neutralizing convalescent plasma. Screening and downselection for serum antibody binding to the receptor-binding domain are followed by quantitative neutralization testing using a chimeric vesicular stomatitis virus expressing spike protein of SARS-CoV-2 in a real-time cell analysis assay. This approach enables a predictive screening process for identifying plasma units that neutralize SARS-CoV-2. To calibrate antibody neutralizing activity in serum from convalescent plasma donors, we introduce a neutralizing antibody standard reagent composed of two human antibodies that neutralize SARS-CoV strains, including SARS-CoV-2 variants of concern. Our results provide a framework for establishing a standardized assessment of antibody-based interventions against COVID-19.

9.
Cell Rep ; 37(12): 110143, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1561098

ABSTRACT

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

10.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1536483

ABSTRACT

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cells, Cultured , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Neutralization Tests/methods , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
11.
[Unspecified Source]; 2020.
Preprint in English | [Unspecified Source] | ID: ppcovidwho-292754

ABSTRACT

We used two approaches to design proteins with shape and chemical complementarity to the receptor binding domain (RBD) of SARS-CoV-2 Spike protein near the binding site for the human ACE2 receptor. Scaffolds were built around an ACE2 helix that interacts with the RBD, or de novo designed scaffolds were docked against the RBD to identify new binding modes. In both cases, designed sequences were optimized first in silico and then experimentally for target binding, folding and stability. Nine designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked bona fide SARS-CoV-2 infection of Vero E6 cells with IC (50) values ranging from 35 pM to 35 nM;the most potent of these - 56 and 64 residue hyperstable proteins made using the second approach - are roughly six times more potent on a per mass basis (IC (50) ~ 0.23 ng/ml) than the best monoclonal antibodies reported thus far. Cryo-electron microscopy structures of the SARS-CoV-2 spike ectodomain trimer in complex with the two most potent minibinders show that the structures of the designs and their binding interactions with the RBD are nearly identical to the computational models, and that all three RBDs in a single Spike protein can be engaged simultaneously. These hyperstable minibinders provide promising starting points for new SARS-CoV-2 therapeutics, and illustrate the power of computational protein design for rapidly generating potential therapeutic candidates against pandemic threats.

12.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750513

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections and hundreds of thousands of deaths. Accordingly, an effective vaccine is of critical importance in mitigating coronavirus induced disease 2019 (COVID-19) and curtailing the pandemic. We developed a replication-competent vesicular stomatitis virus (VSV)-based vaccine by introducing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high titers of antibodies that neutralize SARS-CoV-2 infection and target the receptor binding domain that engages human angiotensin converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice expressing human ACE2 and immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung indicating protection against pneumonia. Finally, passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals protects naïve mice from SARS-CoV-2 challenge. These data support development of VSV-eGFP-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.

13.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750512

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) emerged in late 2019 and has spread worldwide resulting in the Coronavirus Disease 2019 (COVID-19) pandemic. Although animal models have been evaluated for SARS-CoV-2 infection, none have recapitulated the severe lung disease phenotypes seen in hospitalized human cases. Here, we evaluate heterozygous transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lung tissues with additional spread to other organs. Remarkably, a decline in pulmonary function, as measured by static and dynamic tests of respiratory capacity, occurs 4 days after peak viral titer and correlates with an inflammatory response marked by infiltration into the lung of monocytes, neutrophils, and activated T cells resulting in pneumonia. Cytokine profiling and RNA sequencing analysis of SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with prominent signatures of NF-kB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection recapitulates many features of severe COVID-19 infection in humans and can be used to define the mechanistic basis of lung disease and test immune and antiviral-based countermeasures.

14.
Cell Rep ; 37(4): 109881, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1458602

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has necessitated the rapid development of antibody-based therapies and vaccines as countermeasures. Here, we use cryoelectron microscopy (cryo-EM) to characterize two protective anti-SARS-CoV-2 murine monoclonal antibodies (mAbs) in complex with the spike protein, revealing similarities between epitopes targeted by human and murine B cells. The more neutralizing mAb, 2B04, binds the receptor-binding motif (RBM) of the receptor-binding domain (RBD) and competes with angiotensin-converting enzyme 2 (ACE2). By contrast, 2H04 binds adjacent to the RBM and does not compete for ACE2 binding. Naturally occurring sequence variants of SARS-CoV-2 and corresponding neutralization escape variants selected in vitro map to our structurally defined epitopes, suggesting that SARS-CoV-2 might evade therapeutic antibodies with a limited set of mutations, underscoring the importance of combination mAb therapeutics. Finally, we show that 2B04 neutralizes SARS-CoV-2 infection by preventing ACE2 engagement, whereas 2H04 reduces host cell attachment without directly disrupting ACE2-RBM interactions, providing distinct inhibitory mechanisms used by RBD-specific mAbs.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Mice , Protein Interaction Domains and Motifs/immunology , Protein Structure, Quaternary , Spike Glycoprotein, Coronavirus/chemistry
15.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1454205

ABSTRACT

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , Lung/virology , SARS-CoV-2/physiology , Animals , Cells, Cultured , Clone Cells , Cricetinae , Disease Models, Animal , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Viral Load
16.
Nat Microbiol ; 6(10): 1233-1244, 2021 10.
Article in English | MEDLINE | ID: covidwho-1434113

ABSTRACT

Understanding the molecular basis for immune recognition of SARS-CoV-2 spike glycoprotein antigenic sites will inform the development of improved therapeutics. We determined the structures of two human monoclonal antibodies-AZD8895 and AZD1061-which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor-binding domain (RBD) of SARS-CoV-2 to define the genetic and structural basis of neutralization. AZD8895 forms an 'aromatic cage' at the heavy/light chain interface using germ line-encoded residues in complementarity-determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals. AZD1061 has an unusually long LCDR1; the HCDR3 makes interactions with the opposite face of the RBD from that of AZD8895. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the crucial binding residues of both antibodies and identified positions of concern with regards to virus escape from antibody-mediated neutralization. Both AZD8895 and AZD1061 have strong neutralizing activity against SARS-CoV-2 and variants of concern with antigenic substitutions in the RBD. We conclude that germ line-encoded antibody features enable recognition of the SARS-CoV-2 spike RBD and demonstrate the utility of the cocktail AZD7442 in neutralizing emerging variant viruses.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigenic Variation , Binding Sites , COVID-19/immunology , COVID-19/virology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Mutation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
17.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1392996

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/virology , Macaca mulatta/immunology , Nanoparticles/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Ferritins/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology
19.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1364126

ABSTRACT

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Epitopes/chemistry , Epitopes/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Mice , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
Cell Rep ; 36(8): 109604, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1347524

ABSTRACT

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases, as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identify 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, angiotensin-converting enzyme 2 [ACE2]-blocking clone that protects in vivo) and others recognizing non-RBD epitopes that bind the S2 domain. Germline-revertant forms of some public clonotypes bind efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

SELECTION OF CITATIONS
SEARCH DETAIL