Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Antiviral Res ; 203: 105345, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850639

ABSTRACT

In addition to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has become the third deadly coronavirus that infects humans and causes the new coronavirus disease (COVID-19). COVID-19 has already caused more than six million deaths worldwide and it is likely the biggest pandemic of this century faced by mankind. Although many studies on SARS-CoV-2 have been conducted, a detailed understanding of SARS-CoV-2 and COVID-19 is still lacking. Animal models are indispensable for studying its pathogenesis and developing vaccines and antivirals. In this review, we analyze animal models of coronavirus infections and explore their applications on antivirals and vaccines.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/prevention & control , Models, Animal , SARS-CoV-2
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315529

ABSTRACT

Significant efforts are being made worldwide to understand the immune response to SARS-CoV-2, responsible for the COVID-19 pandemic, including the role of pre-existing T cell immunity. Understanding the mechanisms that promote cross-recognition by T cells induced by seasonal coronaviruses will be critical for future predictions on the role of pre-existing immunity in protection against severe disease. We demonstrate that the SARS-CoV-2 nucleocapsid (N) protein induces an immunodominant response in HLA-B7+ COVID-19-recovered individuals that is also readily detectable in unexposed donors. This immunodominant response is driven by a single N-encoded epitope that displays a high degree of conservation with the homologous region in circulating coronaviruses. We show that T cell-mediated cross-reactivity can be detected towards the circulating OC43/HKU-1 coronaviruses, but not the 229E or NL63 coronaviruses, due to different peptide conformations. This cross-reactivity is driven by private T cell receptor repertoires with a bias for TRBV27 and a long CDR3b loop in unexposed and COVID-19-recovered individuals. Together, our findings demonstrate the basis of pre-existing immunity to a conserved and highly immunogenic SARS-CoV-2 epitope driven by cross-reactive memory T cells, suggesting long-lived protective immunity.Funding: This work was supported by generous donations from the QIMR Berghofer COVID 19 appeal, and financial contributions from Monash University, Australian Nuclear Science and Technology Organisation (ANSTO, AISNE ECR grants), Australian Research Council (ARC), National Health and Medical Research Council (NHMRC), and the Medical Research Future Fund (MRFF). H.S. is supported by an Australian Government Research Training Program Scholarship, E.J.G. was supported by an NHMRC CJ Martin Fellowship (#1110429) and is supported by an Australian Research Council DECRA (DE210101479), K.R.S.is supported by an Australian Research Council DECRA (DE180100512), S.G. is supported by and NHMRC SRF (#1159272).Conflict of Interest: The authors declare no competing interests.Ethical Approval: This study was performed according to the principles of the Declaration of Helsinki.Ethics approval to undertake the research was obtained from the QIMR Berghofer Medical Research Institute Human Research Ethics Committee and Monash University Human Research Ethics Committee.

3.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1179683

ABSTRACT

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Coronavirus/classification , Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Cross Reactions , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/genetics , HLA-B7 Antigen/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Models, Molecular , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
4.
Proc Natl Acad Sci U S A ; 117(39): 24384-24391, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-775833

ABSTRACT

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T cells in vitro, with CD4+ T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8+ T cell epitopes, A2/S269-277 and A2/Orf1ab3183-3191 Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/S269 +CD8+ and A2/Orf1ab3183 +CD8+ populations indicated that A2/S269 +CD8+ T cells were detected at comparable frequencies (∼1.3 × 10-5) in acute and convalescent HLA-A*02:01+ patients. These frequencies were higher than those found in uninfected HLA-A*02:01+ donors (∼2.5 × 10-6), but low when compared to frequencies for influenza-specific (A2/M158) and Epstein-Barr virus (EBV)-specific (A2/BMLF1280) (∼1.38 × 10-4) populations. Phenotyping A2/S269 +CD8+ T cells from COVID-19 convalescents ex vivo showed that A2/S269 +CD8+ T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8+ T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/S269 +CD8+ T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8+ T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8+ T cell immunity in COVID-19.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , HLA-A2 Antigen/immunology , Pneumonia, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Epitopes, T-Lymphocyte , Female , Humans , Immunologic Memory , Immunophenotyping , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Male , Middle Aged , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/immunology , Polyproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/chemistry , Viral Proteins/immunology
5.
J Med Chem ; 63(22): 13205-13227, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-741659

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 20 million people infected worldwide with an average mortality rate of 3.6%. This virus poses major challenges to public health, as it not only is highly contagious but also can be transmitted by asymptomatic infected individuals. COVID-19 is clinically difficult to manage due to a lack of specific antiviral drugs or vaccines. In this article, Chinese therapy strategies for treating COVID-19 patients, including current applications of traditional Chinese medicine (TCM), are comprehensively reviewed. Furthermore, 72 small molecules from natural products and TCM with reported antiviral activity against human coronaviruses (CoVs) are identified from published literature, and their potential applications in combating SARS-CoV-2 are discussed. Among these, the clinical efficacies of some accessible drugs such as remdesivir (RDV) and favipiravir (FPV) for COVID-19 are emphatically summarized. We hope this review provides a foundation for managing the worsening pandemic and developing antivirals against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus Protease Inhibitors/therapeutic use , Drugs, Chinese Herbal/therapeutic use , SARS-CoV-2/drug effects , Small Molecule Libraries/therapeutic use , COVID-19/epidemiology , China/epidemiology , Humans , Medicine, Chinese Traditional , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL