Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Total Environ ; 880: 163333, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2304489

ABSTRACT

Constantly mutating SARS-CoV-2 is a global concern resulting in COVID-19 infectious waves from time to time in different regions, challenging present-day diagnostics and therapeutics. Early-stage point-of-care diagnostic (POC) biosensors are a crucial vector for the timely management of morbidity and mortalities caused due to COVID-19. The state-of-the-art SARS-CoV-2 biosensors depend upon developing a single platform for its diverse variants/biomarkers, enabling precise detection and monitoring. Nanophotonic-enabled biosensors have emerged as 'one platform' to diagnose COVID-19, addressing the concern of constant viral mutation. This review assesses the evolution of current and future variants of the SARS-CoV-2 and critically summarizes the current state of biosensor approaches for detecting SARS-CoV-2 variants/biomarkers employing nanophotonic-enabled diagnostics. It discusses the integration of modern-age technologies, including artificial intelligence, machine learning and 5G communication with nanophotonic biosensors for intelligent COVID-19 monitoring and management. It also highlights the challenges and potential opportunities for developing intelligent biosensors for diagnosing future SARS-CoV-2 variants. This review will guide future research and development on nano-enabled intelligent photonic-biosensor strategies for early-stage diagnosing of highly infectious diseases to prevent repeated outbreaks and save associated human mortalities.

2.
Drug Discov Today ; 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-2288973

ABSTRACT

Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.

3.
Australasian Journal of Disaster and Trauma Studies ; 26(1):15-22, 2022.
Article in English | APA PsycInfo | ID: covidwho-2254692
4.
Drugs Today (Barc) ; 59(1): 37-49, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2269398

ABSTRACT

On March 23, 2022, the U.S. Food and Drug Administration (FDA) approved Pluvicto (lutetium Lu 177 vipivotide tetraxetan), also known as 177Lu-PSMA-617, for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who have highly expressed prostate-specific membrane antigen (PSMA) and have at least one metastatic lesion. It is the first FDA-approved targeted radioligand therapy for eligible men with PSMA-positive mCRPC. Lutetium Lu 177 vipivotide tetraxetan is a radioligand that strongly binds to PSMA, making it ideal for treating cancers of the prostate by targeted radiation, resulting in DNA damage and cell death. PSMA is overexpressed in cancer cells while being lowly expressed in normal tissues, which makes it an ideal theranostic target. As precision medicine advances, this is a thrilling turning point for highly individualized treatments. This review aims to summarize the pharmacology and clinical studies of the novel drug lutetium Lu 177 vipivotide tetraxetan for the treatment of mCRPC, emphasizing its mechanism of action, pharmacokinetics and safety.


Subject(s)
Lutetium , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Lutetium/adverse effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostate-Specific Antigen/therapeutic use , Treatment Outcome
5.
Am J Chin Med ; 50(4): 883-925, 2022.
Article in English | MEDLINE | ID: covidwho-2264676

ABSTRACT

To compare the efficacy of different traditional Chinese medicine (TCM) therapies for the treatment of coronavirus disease 2019 (COVID-19) and provide a higher level of evidence in the form of network meta-analysis (NMA) and systematic review. We searched the studies from the following databases: CNKI, VIP, WanFang, SinoMed, PubMed, Embase, and Web of Science from the establishment of the respective database until December 2021. Relevant studies were screened according to the pre-established inclusion criteria. The quality of the included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) were assessed using the risk of bias (ROB) tool and the Methodological Index for Non-Randomized Studies (MINORS), respectively. R software 4.1.1 and Stata 13.1 were used for data analysis and mapping. A total of 34 studies were included in this network meta-analysis that tested 24 TCM interventions and included 3443 patients. Using cluster analysis of time to negative SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR), the length of hospital stay and composite events, we found that Jinyinhua oral liquid (JYH, 120 mL) + conventional Western medicine (CWM) has the highest SUCRA value at 88.64%, 85.61% and 84.24%. The traditional meta-analysis results revealed that Qingfei Paidu decoction + CWM were significantly different compared with CWM alone for the score of clinical symptoms (MD =-0.75, 95% CI [-1.04, -0.47]). Nine studies reported 57 adverse reactions (ADRs) and 3 adverse events (ADEs) in TCM + CWM groups, and eight studies reported 33 ADRs and 8 ADEs in CWM groups. In conclusion, the combination of TCM and CWM approaches may enhance the efficacy of CWM in COVID-19 patients. Based on the NMA result, JYH (120 mL) + CWM may be a more effective treatment and deserves further investigation. However, the differences in many comparisons between TCM interventions did not reach statistical significance; therefore, further high-quality studies are required to validate these findings.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Network Meta-Analysis , SARS-CoV-2 , Treatment Outcome
6.
Expert Rev Vaccines ; 21(11): 1603-1620, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2254449

ABSTRACT

INTRODUCTION: Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED: The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION: In this pandemic, we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Vaccination
7.
J Med Virol ; 2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2232515

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused extensive loss of life worldwide. Further, the COVID-19 and influenza mix-infection had caused great distress to the diagnosis of the disease. To control illness progression and limit viral spread within the population, a real-time reverse-transcription PCR (RT-PCR) assay for early diagnosis of COVID-19 was developed, but detection was time-consuming (4-6 h). To improve the diagnosis of COVID-19 and influenza, we herein developed a recombinase polymerase amplification (RPA) method for simple and rapid amplification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 and Influenza A (H1N1, H3N2) and B (influenza B). Genes encoding the matrix protein (M) for H1N1, and the hemagglutinin (HA) for H3N2, and the polymerase A (PA) for Influenza B, and the nucleocapsid protein (N), the RNA-dependent-RNA polymerase (RdRP) in the open reading frame 1ab (ORF1ab) region, and the envelope protein (E) for SARS-CoV-2 were selected, and specific primers were designed. We validated our method using SARS-CoV-2, H1N1, H3N2 and influenza B plasmid standards and RNA samples extracted from COVID-19 and Influenza A/B (RT-PCR-verified) positive patients. The method could detect SARS-CoV-2 plasmid standard DNA quantitatively between 102 and 105 copies/ml with a log linearity of 0.99 in 22 min. And this method also be very effective in simultaneous detection of H1N1, H3N2 and influenza B. Clinical validation of 100 cases revealed a sensitivity of 100% for differentiating COVID-19 patients from healthy controls when the specificity was set at 90%. These results demonstrate that this nucleic acid testing method is advantageous compared with traditional PCR and other isothermal nucleic acid amplification methods in terms of time and portability. This method could potentially be used for detection of SARS-CoV-2, H1N1, H3N2 and influenza B, and adapted for point-of-care (POC) detection of a broad range of infectious pathogens in resource-limited settings.

9.
Vaccines (Basel) ; 10(12)2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2143809

ABSTRACT

The world has been affected socioeconomically for the last two years due to the emergence of different variants of the COVID-19 virus. Vaccination is the major and most efficient way to prevent the widening of this pandemic. Those who are having comorbidities are more vulnerable to serious infections due to their immunocompromised state. Additionally, cancer patients could be at significant risk for COVID-19. In this pandemic era, the diagnosis and treatment of cancer were significantly affected. Clinical trials at the initial stage were performed on healthy or COVID-19 infected patients. This produces a greater level of hesitancy in cancer patients. This review article provide an update regarding the vaccination and treatment for COVID-19 in patients with cancer and future directions.

10.
Front Surg ; 9: 994536, 2022.
Article in English | MEDLINE | ID: covidwho-2089959

ABSTRACT

Background: Traumatic spinal cord injuries (TSCIs) are worldwide public health problems that are difficult to cure and impose a substantial economic burden on society. There has been a lack of extensive multicenter review of TSCI epidemiology in northwest China during the Corona Virus Disease 2019 (COVID-19) pandemic. Method: A multicenter retrospective study of 14 selected hospitals in two provinces in northwest China was conducted on patients admitted for TSCI between 2017 and 2020. Variables assessed included patient demographics, etiology, segmental distribution, treatment, waiting time for treatment, and outcomes. Results: The number of patients with TSCI showed an increasing trend from 2017 to 2019, while there were 12.8% fewer patients in 2020 than in 2019. The male-to-female ratio was 3.67:1, and the mean age was 48 ± 14.9 years. The primary cause of TSCI was high falls (38.8%), slip falls/low falls (27.7%), traffic accidents (23.9%), sports (2.6%), and other factors (7.0%). The segmental distribution showed a bimodal pattern, peak segments were C6 and L1 vertebra, L1 (14.7%), T12 (8.2%), and C6 (8.2%) were the most frequently injured segments. In terms of severity, incomplete injury (72.8%) occurred more often than complete injury (27.2%). The American Spinal Injury Association impairment scale of most patients did not convert before and after treatment in the operational group (71.6%) or the conservative group (80.6%). A total of 975 patients (37.2%) from urban and 1,646 patients (62.8%) from rural areas were included; almost all urban residents could rush to get treatment after being injured immediately (<1 h), whereas most rural patients get the treatment needed 4-7 h after injury. The rough annual incidence from 2017 to 2020 is 112.4, 143.4, 152.2, and 132.6 per million people, calculated by the coverage rate of the population of the sampling hospital. Conclusion: The incidence of TSCI in northwest China is high and on the rise. However, due to pandemic policy reasons, the incidence of urban residents decreased in 2020. The promotion of online work may be an effective primary prevention measure for traumatic diseases. Also, because of the further distance from the good conditional hospital, rural patients need to spend more time there, and the timely treatment of patients from remote areas should be paid attention to.

11.
Front Immunol ; 13: 961198, 2022.
Article in English | MEDLINE | ID: covidwho-2080141

ABSTRACT

In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Pharmaceutical Preparations
12.
Pharmacol Rep ; 74(6): 1120-1148, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2060191

ABSTRACT

The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of ß-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.

14.
Front Public Health ; 10: 923485, 2022.
Article in English | MEDLINE | ID: covidwho-2022950

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) causes life-threatening with the high-fatality rates and spreads with high-infectious disease worldwide. We aimed to systematically review the comorbidities and complications of COVID-19 that are associated with various disease severity, progression, and mortality in China, to provide contemporary and reliable estimates in settings with centralized isolation and hospitalization. Methods: In this systematic review and meta-analysis, we searched four main English language databases, and four main Chinese language databases for observational studies published from inception to January 2022, to identify all the related comorbidities and complications of COVID-19, in the China region with centralized isolation and hospitalization, with disease severity, progression, and mortality. Literature search, data extraction, and quality assessment were independently conducted by two reviewers. We used the generalized linear mixed model to estimate pooled effect sizes for any comorbidities and complications, and subgroup in gender ratio was done to further address the potential heterogeneity. Results: Overall, 187 studies describing 77,013 patients, namely, 54 different comorbidities and 46 various complications of COVID-19, were identified who met our inclusion criteria. The most prevalent comorbidities were hypertension [20.37% 95% CI (15.28-26.63), 19.29% (16.17-22.85), 34.72% (31.48-38.10), and 43.94% (38.94-49.06)] and diabetes [7.84% (5.78-10.54), 8.59% (7.25-10.16), 17.99% (16.29-19.84), and 22.68% (19.93-25.69)] in mild, moderate, severe, and critical cases. The most prevalent complications were liver injury [10.00% (1.39-46.72), 23.04% (14.20-35.13), and 43.48% (39.88-47.15)] in mild, moderate, and severe cases, and acute respiratory distress syndrome [ARDS; 94.17% (20.78-99.90)] and respiratory failure [90.69% (28.08-99.59)] in critical cases. Renal insufficiency [odds ratio (OR) 17.43 (6.69-45.43)] in comorbidities and respiratory failure [OR 105.12 (49.48-223.33)] in complications were strongly associated in severe/critical than in mild/moderate cases. The highest estimated risk in intensive care unit (ICU) admission, progression, and mortality was an autoimmune disease, nervous system disease, and stroke in comorbidities, shock, and ARDS in complications. Conclusion: Comorbidities and complications in inpatients with COVID-19 were positively associated with increased risk in severe and critical cases, ICU admission, exacerbation, and death during centralized isolation and hospitalization. Prompt identification of comorbidities and complications in inpatients with COVID-19 can enhance the prevention of disease progression and death and improve the precision of risk predictions.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/epidemiology , Hospitalization , Humans , Observational Studies as Topic , SARS-CoV-2 , Severity of Illness Index
15.
Nature ; 609(7928): 793-800, 2022 09.
Article in English | MEDLINE | ID: covidwho-1984402

ABSTRACT

The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.


Subject(s)
RNA Caps , RNA, Viral , SARS-CoV-2 , Viral Proteins , Antiviral Agents , COVID-19/virology , Catalytic Domain , Guanosine Diphosphate/metabolism , Humans , Methyltransferases/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Protein Domains , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
16.
17.
Clin Epidemiol ; 14: 925-935, 2022.
Article in English | MEDLINE | ID: covidwho-1978912

ABSTRACT

Purpose: The systematic review aims to analyze and summarize the characteristics of living systematic review (LSR) for coronavirus disease 2019 (COVID-19). Methods: Six databases including Medline, Excerpta Medica (Embase), Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database and China Science, and Technology Journal Database (VIP), were searched as the source of basic information and methodology of LSR. Descriptive analytical methods were used to analyze the included COVID-19 LSRs, and the study characteristics of COVID-19 LSRs were further assessed. Results: Sixty-four COVID-19 LSRs were included. Eighty-nine point one percent of LSRs were published on Science Citation Index (SCI) journals, and 64.1% publication with an impact factor (IF) >5 and 17.2% with an IF >15 among SCI journals. The first unit of the published LSRs for COVID-19 came from 19 countries, with the largest contribution from the UK (17.2%, 11/64). Forty point six percent of LSRs for COVID-19 were related to therapeutics topic which was considered the most concerned perspective for LSRs for COVID-19. Seventy-six point six percent of LSRs focused on the general population, with less attention to children, pregnant women and the elderly. However, the LSR for COVID-19 was reported incomplete on "living" process, including 40.6% of studies without search frequency, 79.7% of studies without screening frequency, 20.3% of studies without update frequency, and 65.6% of studies without the timing or criteria of transitioning LSR out of living mode. Conclusion: Although researchers in many countries have applied LSRs to COVID-19, most of the LSRs for COVID-19 were incomplete in reporting on the "living" process and less focused on special populations. This could reduce the confidence of health-care providers and policy makers in the results of COVID-19 LSR, thereby hindering the translation of evidence on COVID-19 LSR into clinical practice. It was necessary to explicitly enact preferred reporting items for systematic reviews and meta-analyses (PRISMA) to improve the reporting quality of LSR and support ongoing efforts of therapeutics research for special patients with COVID-19.

18.
J Am Coll Emerg Physicians Open ; 3(4): e12783, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1966043

ABSTRACT

Objective: Patient crowding and boarding in the emergency department (ED) is associated with adverse outcomes and has become increasingly problematic in recent years. We investigated the impact of an ED patient flow countermeasure using an early warning score. Methods: We conducted a cross-sectional analysis of observational data from patients who presented to the ED of a Level 1 Trauma Center in Pennsylvania. We implemented a modified version of the Modified Early Warning Score (MEWS), called mMEWS, to address patient flow. Patients aged ≥18 years old admitted to the adult hospital medicine service were included in the study. We compared the pre-mMEWS (February 19, 2017-February 18, 2019) to the post-mMEWS implementation period (February 19, 2019-June 30, 2020). During the intervention, low MEWS (0-1) scoring admissions went directly to the inpatient floor with expedited orders, the remainder waited in the ED until the hospital medicine admitting team evaluated the patient and then placed orders. We investigated the association between mMEWS, ED length of stay (LOS), and 24-hour rapid response team (24 hour-RRT) activation. RRT activation rates were used as a measure of adverse outcome for the new process and are a network team response for admitted patients who are rapidly decompensating. The association between mMEWS and the outcomes of ED length of stay in minutes and 24 hour-RRT activation was assessed using linear and logistic regression adjusting for a priori selected confounders, respectively. Results: Of the total 43,892 patients admitted, 19,962 (45.5%) were in the pre-mMEWS and 23,930 (54.5%) in the post-mMEWS implementation period. The median post-mMEWS ED LOS was shorter than the pre-mMEWS (376 vs 415 minutes; P < 0.01). After accounting for potential confounders, there was a 4.57% decrease in the ED LOS after implementing mMEWS (95% confidence interval [CI], 4.20-4.94; P < 0.01). The proportion of 24 hour-RRT did not differ significantly when comparing pre- and post-mMEWS (33.5% vs 34.4%; P = 0.83). Conclusion: The use of a modified MEWS enhanced admission process to the hospital medicine service, even during the COVID-19 pandemic, was associated with a significant decrease in ED LOS without a significant increase in 24 hour-RRT activation.

19.
Front Pharmacol ; 13: 899633, 2022.
Article in English | MEDLINE | ID: covidwho-1952533

ABSTRACT

Treatment choices for the "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)" are inadequate, having no clarity on efficacy and safety profiles. Currently, no established intervention has lowered the mortality rate in the "coronavirus disease 2019 (COVID-19)" patients. Recently, 2-deoxy-D-glucose (2-DG) has evaluated as a polypharmacological agent for COVID-19 therapy owing to its influence on the glycolytic pathway, interaction with viral proteins, and anti-inflammatory action. In May 2020, the Indian drug regulatory authority approved 2-DG as an emergency adjunct therapy in mild to severe COVID-19 patients. Clinical studies of 2-DG corroborate that it aids in faster recovery of hospitalized patients and decreases supplemental oxygen. Herein, we describe the development process, synthesis, mechanism of viral eradication, and preclinical and clinical development of 2-DG and its derivatives as molecularly targeted therapeutics for COVID-19 treatment.

20.
J Drug Target ; 30(3): 244-258, 2022 03.
Article in English | MEDLINE | ID: covidwho-1684258

ABSTRACT

Ferroptosis is an iron-dependent cell death pathway and participates in various diseases. Current evidence suggests that ferroptosis can obviously affect the function of blood cells. This paper aims to elaborate the role of ferroptosis in blood cells and related diseases. First, abnormal ferroptosis damages the developing red blood cells by breaking systemic iron homeostasis, leading to erythropoiesis suppression and anaemia. Ferroptosis mediates neutrophils recruitment and neutrophil extracellular trap formation (NETosis). In T-cells, ferroptosis induces a novel point of synergy between immunotherapy and radiotherapy. Additionally, ferroptosis may mediate B cells differentiation, antibody responses and lymphoma. Nevertheless, increased ferroptosis can ameliorate acute myeloid leukaemia and T-cell leukaemia/lymphoma by inducing iron-dependent cancer cells death. Besides, ferroptosis activates platelets by increasing P-selectin, thus causing thromboembolism. Ferroptosis mediates virus infection and parasite infection by driving T-cell death and preventing T-cell immunity. Interestingly, ferroptosis is also considered as a critical player in COVID-19 infections, while targetting ferroptosis may also improve thromboembolism and prognosis in patients with COVID-19 infection. Overall, the crucial role of ferroptosis in blood cells will show a new therapeutic potential in blood cell-related diseases.HighlightsFerroptosis shows a new therapeutic potential for blood cell-related diseases.Ferroptosis damages erythropoiesis and thus induces anaemia.Ferroptosis induces platelet activation and leads to thromboembolism.Ferroptosis regulates T-cell and B-cell immunity, which participant in infectious diseases.Inversely, ferroptosis ameliorates acute myeloid leukaemia and T-cell leukaemia.


Subject(s)
Blood Cells/drug effects , Blood Cells/metabolism , COVID-19/therapy , Drug Delivery Systems , Ferroptosis/drug effects , SARS-CoV-2 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL