Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mathematical Problems in Engineering ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1909882

ABSTRACT

Dangerous Internet use alludes to unreasonable utilization of the Internet that unfavorably influences individual emotional well-being, relational correspondence, social transformation, social turn of events, learning, and work. This paper aims to study how to analyze and study the psychological mechanism and exercise intervention of problematic Internet use based on the Internet of Things technology, and describe it. It addresses the question of problematic web usage, and this question is based on IoT technology. This paper then elaborates on the concept of data mining and related algorithms. It designs and analyzes the psychological mechanism and exercise intervention of college students’ problematic Internet use. The experimental results showed that in the incidence of Internet addiction, gender, grade, family economic environment, and single-parent family will be affected. Moderate-intensity (50%–80% VO2 max) aerobic and anaerobic exercise for more than 30 minutes per year has a positive effect on college students’ Internet addiction.

2.
Front Immunol ; 13: 884433, 2022.
Article in English | MEDLINE | ID: covidwho-1862609

ABSTRACT

The development of an effective multivalent vaccine against SARS-CoV-2 variants is an important means to improve the global public health situation caused by COVID-19. In this study, we identified the antigen epitopes of the main global epidemic SARS-CoV-2 and mutated virus strains using immunoinformatics approach, and screened out 8 cytotoxic T lymphocyte epitopes (CTLEs), 17 helper T lymphocyte epitopes (HTLEs), 9 linear B-cell epitopes (LBEs) and 4 conformational B-cell epitopes (CBEs). The global population coverage of CTLEs and HTLEs was 93.16% and 99.9% respectively. These epitopes were spliced together by corresponding linkers and recombined into multivalent vaccine. In silico tests, the vaccine protein was a non-allergen and the docking with TLR-3 molecule showed a strong interaction. The results of immune simulation showed that the vaccine may be helpful to initiate both cellular and humoral immunity against all VOC. The optimistic immunogenicity of the vaccine was confirmed in vivo and in vitro finally. Therefore, our vaccine may have potential protection against SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics , Vaccines, Combined
3.
J Clin Virol Plus ; 2(3): 100080, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1819525

ABSTRACT

Background: SARS-CoV-2 antigen-based tests are well-calibrated to infectiousness and have a critical role to play in the COVID-19 public health response. We report the development and performance of a unique lateral flow immunoassay (LFA). Methods: Combinations of several monoclonal antibodies targeting multiple antigenic sites on the SARS-CoV-2 nucleocapsid protein (NP) were isolated, evaluated, and chosen for the development of a LFA termed CoV-SCAN (BioMedomics, Inc.). Clinical point-of-care studies in symptomatic and asymptomatic individuals were conducted to evaluate positive predictive agreement (PPA) and negative predictive agreement (NPA) with RT-PCR as comparator. Results: In laboratory testing, CoV-SCAN detected 14 recombinant N-proteins of SARS-CoV-2 variants with sensitivity in the range of 0.2-3.2 ng/mL, and 10 authentic SARS-CoV-2 variants with sensitivity in the range of 1.6-12.5 TCID50/swab. No cross reactivity was observed with other human coronaviruses or other respiratory pathogens. In clinical point-of-care testing on 148 individuals over age 2 with symptoms of ≤5 days, PPA was 87.2% (CI 95: 78.3-94.8%) and NPA was 100% (CI 95: 94.2-100%). In another 884 asymptomatic individuals, PPA was 85.7% (CI 95: 42.1-99.6%) and 99.7% (99.0-99.9%). Overall, CoV-SCAN detected over 97.2% of specimens with CT values <30 and 93.8% of nasal swab specimens with the Omicron variant, even within the first 2 days after symptom onset. Conclusions: The unique construction of CoV-SCAN using two pairs of monoclonal antibodies has resulted in a test with high performance that remains durable across multiple variants in both laboratory and clinical evaluations. CoV-SCAN should identify almost all individuals harboring infectious SARS-CoV-2. Summary: Unique construction of a point-of-care rapid antigen test using two pairs of monoclonal antibodies has led to good performance that remained durable across multiple variants in laboratory and clinical evaluations. Test should identify almost all individuals harboring infectious SARS-CoV-2.

4.
Am J Mens Health ; 16(1): 15579883221074816, 2022.
Article in English | MEDLINE | ID: covidwho-1704337

ABSTRACT

With the global epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the increasing number of infections, little is known about how SARS-CoV-2 affects the male reproductive system during infection or after recovery. Based on the existing research data, we reviewed the effects of SARS-CoV-2 on the male reproductive system and discussed its possible mechanism of action. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme 2 (ACE2)/transmembrane serine protease 2 (TMPRSS2) pathway, and males are more susceptible than females. After infection, immunopathological damage is noticed in the testicles, and the semen index is significantly reduced. Second, abnormalities of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels were also observed, suggesting that there may be dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis. Even after recovery, the effect of SARS-CoV-2 on the male reproductive system can last for at least a period. There are still many unresolved questions about the effect of SARS-CoV-2 infection on the male reproductive tract. Other receptors involved during the invasion of human cells by SARS-CoV-2 remain to be identified. Will the mutation of SARS-CoV-2 increase the diversity of receptors? How does SARS-CoV-2 affect the HPG axis? The long-term effects of SARS-CoV-2 on the male reproductive system remain to be evaluated. SARS-CoV-2 infection can affect male reproductive function. Standard treatment strategies should be developed in time to protect the fertility of infected patients. For recovered patients with fertility requirements, fertility assessments should be performed and professional fertility guidance should be provided at the same time.


Subject(s)
COVID-19 , Female , Genitalia, Male , Humans , Male , Reproduction , SARS-CoV-2 , Testis
5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315171

ABSTRACT

Objective: Sepsis is a life-threatening condition, and the mechanism of coagulation dysfunction in sepsis remains unknown. We aimed to investigate the mechanism of coagulation dysfunction in sepsis. Methods: . Standard methods were used to establish the sepsis models and generate gene expression profiles. Bioinformatics analysis was carried out by GO and KEGG enrichment analysis, construction of PPIs and screening of seed genes. Finally, seed genes were used to rebuild the disease-related pathways. Results: . Our experiments revealed an inflammatory response and coagulation dysfunction in both animal and cell models. After determining the DEGs, GO and KEGG functional analysis showed that there is a significant correlation between the inflammatory response and DNA damage. PPI network analysis screened 9 seed genes related to cell mitosis and platelet-derived growth factor receptor signaling pathways. Some of the seed genes were relevant to COVID-19. Conclusions: . This study explored the molecular mechanism of coagulation dysfunction in sepsis models by bioinformatics analysis. This may have guiding significance in reducing the risk of complications in patients with sepsis and improving the effectiveness of treatment.

6.
Front Cell Infect Microbiol ; 11: 766922, 2021.
Article in English | MEDLINE | ID: covidwho-1581381

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and has infected more than 250 million people. A typical feature of COVID-19 is the lack of type I interferon (IFN-I)-mediated antiviral immunity in patients. However, the detailed molecular mechanisms by which SARS-CoV-2 evades the IFN-I-mediated antiviral response remain elusive. Here, we performed a comprehensive screening and identified a set of SARS-CoV-2 proteins that antagonize the IFN-I response. Subsequently, we characterized the mechanisms of two viral proteins antagonize IFN-I production and downstream signaling. SARS-CoV-2 membrane protein binds to importin karyopherin subunit alpha-6 (KPNA6) to inhibit interferon regulatory factor 3(IRF3) nuclear translocation. Further, the spike protein interacts with signal transducer and activator of transcription 1 (STAT1) to block its association with Janus kinase 1 (JAK1). This study increases our understanding of SARS-CoV-2 pathogenesis and suggests novel therapeutic targets for the treatment of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Spike Glycoprotein, Coronavirus , Viral Matrix Proteins , Humans , SARS-CoV-2 , Signal Transduction , Viral Proteins
7.
Environ Sci Technol ; 55(17): 12009-12018, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1483072

ABSTRACT

Diatrizoate, a refractory ionic iodinated X-ray contrast media (ICM) compound, cannot be efficiently degraded in a complex wastewater matrix even by advanced oxidation processes. We report in this research that a homogeneous process, thiourea dioxide (TDO) coupled with trace Cu(II) (several micromoles, ubiquitous in some wastewater), is effective for reductive deiodination and degradation of diatrizoate at neutral pH values. Specifically, the molar ratio of iodide released to TDO consumed reached 2 under ideal experimental conditions. TDO eventually decomposed into urea and sulfite/sulfate. Based on the results of diatrizoate degradation, TDO decomposition, and Cu(I) generation and consumption during the TDO-Cu(II) reaction, we confirmed that Cu(I) is responsible for diatrizoate degradation. However, free Cu(I) alone did not work. It was proposed that Cu(I) complexes are actual reactive species toward diatrizoate. Inorganic anions and effluent organic matter negatively influence diatrizoate degradation, but by increasing the TDO dosage, as well as extending the reaction time, its degradation efficiency can still be guaranteed for real hospital wastewater. This reduction reaction could be potentially useful for in situ deiodination and degradation of diatrizoate in hospital wastewater before discharge into municipal sewage networks.


Subject(s)
Diatrizoate , Water Pollutants, Chemical , Contrast Media , Oxidation-Reduction , Thiourea/analogs & derivatives , Waste Water , Water Pollutants, Chemical/analysis
8.
Transl Androl Urol ; 10(1): 466-474, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1079883

ABSTRACT

BACKGROUND: To introduce and determine the value of optimized strategies for the management of urological tube-related emergencies with increased incidence, complexity and operational risk during the global spread of coronavirus disease 2019 (COVID-19). METHODS: All emergent urological patients at Tongji Hospital, Wuhan, during the period of January 23 (the beginning of lockdown in Wuhan) to March 23, 2020, and the corresponding period in 2019 were recruited to form this study's COVID-19 group and control group, respectively. Tongji Hospital has the most concentrated and strongest Chinese medical teams to treat the largest number of severe COVID-19 patients. Patients in the control group were routinely treated, while patients in the COVID-19 group were managed following the optimized principles and strategies. The case incidence for each type of tube-related emergency was recorded. Baseline characteristics and management outcomes (surgery time, secondary complex operation rate, readmission rate, COVID-19 infection rate) were analyzed and compared across the control and COVID-19 periods. RESULTS: The total emergent urological patients during the COVID-19 period was 42, whereas during the control period, it was 124. The incidence of tube-related emergencies increased from 53% to 88% (P<0.001) during the COVID-19 period. In particular, the incidence of nephrostomy tube-related (31% vs. 15%, P=0.027) and single-J stent-related problems (19% vs. 6%, P=0.009) increased significantly. The mean surgery times across the two periods were comparable. The number of secondary complex operations increased from 12 (18%) to 14 (38%) (P=0.028) during the COVID 19-period. The number of 2-week postoperative readmission decreased from 10 (15%) to 1 (3%) (P=0.049). No participants contracted during the COVID-19 period. CONCLUSIONS: Urological tube-related emergencies have been found to have a higher incidence and require more complicated and dangerous operations during the COVID-19 pandemic. However, the optimized management strategies introduced in this study are efficient, and safe for both urologists and patients.

9.
Academic Journal of Second Military Medical University ; 41(4):400-405, 2020.
Article in Chinese | GIM | ID: covidwho-833129

ABSTRACT

The coronavirus disease 2019 (COVID-19) was reported in Dec. 2019. In Mar. 11, 2020 (local time), the World Health Organization (WHO) declared COVID-19 a pandemic. Preventing the healthcare-associated infection of COVID-19 is one of the key steps for controlling the source of infection, cutting off the route of transmission and eliminating the pandemic. We analyzed the current challenges and problems in the prevention and control of healthcare-associated infection of COVID-19, and proposed corresponding and targeted medical countermeasures for the prevention and control of COVID-19 can from the aspects of personnel, hardware and process management, which may contribute to better dealing with the pandemic challenge of COVID-19, protecting medical staff from occupational injuries and getting the pandemic under control.

10.
Cell Commun Signal ; 18(1):104-104, 2020.
Article in English | MEDLINE | ID: covidwho-662379

ABSTRACT

BACKGROUND: Sepsis is an infection-induced aggressive and life-threatening organ dysfunction with high morbidity and mortality worldwide. Infection-associated inflammation and coagulation promote the progression of adverse outcomes in sepsis. Here, we report that phospho-Tyr705 of STAT3 (pY-STAT3), not total STAT3, contributes to systemic inflammation and coagulopathy in sepsis. METHODS: Cecal ligation and puncture (CLP)-induced septic mice were treated with BP-1-102, Napabucasin, or vehicle control respectively and then assessed for systemic inflammation, coagulation response, lung function and survival. Human pulmonary microvascular endothelial cells (HPMECs) and Raw264.7 cells were exposed to lipopolysaccharide (LPS) with pharmacological or genetic inhibition of pY-STAT3. Cells were assessed for inflammatory and coagulant factor expression, cell function and signaling. RESULTS: Pharmacological inhibition of pY-STAT3 expression by BP-1-102 reduced the proinflammatory factors, suppressed coagulation activation, attenuated lung injury, alleviated vascular leakage and improved the survival rate in septic mice. Pharmacological or genetic inhibition of pY-STAT3 diminished LPS-induced cytokine production in macrophages and protected pulmonary endothelial cells via the IL-6/JAK2/STAT3, NF-κB and MAPK signaling pathways. Moreover, the increase in procoagulant indicators induced by sepsis such as tissue factor (TF), the thrombin-antithrombin complex (TAT) and D-Dimer were down-regulated by pY-STAT3 inhibition. CONCLUSIONS: Our results revealed a therapeutic role of pY-STAT3 in modulating the inflammatory response and defective coagulation during sepsis. Video Abstract.

11.
Eur Urol Open Sci ; 20: 20-27, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-735094

ABSTRACT

BACKGROUND: Emerging asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were detected and multiple cases were found to be SARS-CoV-2 positive again, which raised an alarm for the patients hospitalized after the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVE: We investigated the risk and prevention of hospital transmission of SARS-CoV-2 to hospitalized urological patients. DESIGN SETTING AND PARTICIPANTS: This is a retrospective study of 319 hospitalized urological patients enrolled between April 20, 2020 and May 11, 2020 from two tertiary hospitals in Wuhan, China. INTERVENTION: Chest computed tomography (CT) images, nucleic acid tests (NATs), and serum antibody were examined at the outpatient department and 1 wk after admission for all patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The chest CT images, NATs, serum antibody results, and clinical data were collected and analyzed. RESULTS AND LIMITATIONS: None of the 319 patients was found to be SARS-CoV-2 NAT positive. Ten and four patients were detected to be immunoglobulin (Ig)G and IgM positive, respectively. The chest CT features of 116 patients showed abnormal lung findings. During the 1-wk isolation, one patient initially being IgG positive only was found to be IgM positive, and another initially IgM-positive patient had a rising IgG level. Through risk assessment, we identified seven patients with very high and high risk for hospital transmission, and delayed the surgery while maintaining close follow-up. Five intermediate-risk patients were operated on successfully under paravertebral block or epidural anesthesia to avoid opening the airway with endotracheal intubation. The remaining 104 low-risk and 203 normal patients underwent normal surgery. CONCLUSIONS: Of the 319 patients, seven were identified as very high and high risk, which reinforced the importance of epidemic surveillance of discharged COVID-19 patients and asymptomatic infections. Five intermediate-risk patients were operated on successfully under regional anesthesia. PATIENT SUMMARY: Our experience of risk assessment and management practice may provide a strategy to prevent severe acute respiratory syndrome coronavirus 2 transmission to hospitalized urological patients after the coronavirus disease 2019 (COVID-19) pandemic.

12.
Virol Sin ; 35(3): 351-354, 2020 06.
Article in English | MEDLINE | ID: covidwho-361408
13.
J Med Virol ; 92(9): 1518-1524, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-2600

ABSTRACT

The outbreak of the novel coronavirus disease (COVID-19) quickly spread all over China and to more than 20 other countries. Although the virus (severe acute respiratory syndrome coronavirus [SARS-Cov-2]) nucleic acid real-time polymerase chain reaction (PCR) test has become the standard method for diagnosis of SARS-CoV-2 infection, these real-time PCR test kits have many limitations. In addition, high false-negative rates were reported. There is an urgent need for an accurate and rapid test method to quickly identify a large number of infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of patients. We have developed a rapid and simple point-of-care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS-CoV-2 virus in human blood within 15 minutes which can detect patients at different infection stages. With this test kit, we carried out clinical studies to validate its clinical efficacy uses. The clinical detection sensitivity and specificity of this test were measured using blood samples collected from 397 PCR confirmed COVID-19 patients and 128 negative patients at eight different clinical sites. The overall testing sensitivity was 88.66% and specificity was 90.63%. In addition, we evaluated clinical diagnosis results obtained from different types of venous and fingerstick blood samples. The results indicated great detection consistency among samples from fingerstick blood, serum and plasma of venous blood. The IgM-IgG combined assay has better utility and sensitivity compared with a single IgM or IgG test. It can be used for the rapid screening of SARS-CoV-2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Immunoassay , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19/virology , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Point-of-Care Testing , Reagent Kits, Diagnostic , Reagent Strips , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL