Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Public Health ; 10: 885852, 2022.
Article in English | MEDLINE | ID: covidwho-1903228

ABSTRACT

To control the coronavirus pandemic (COVID-19), China implemented the Paired Assistance Policy (PAP). Local responders in 16 cities in Hubei Province were paired with expert teams from 19 provinces and municipalities. Fully supported by the country's top-down political system, PAP played a significant role in alleviating the COVID-19 pandemic in Hubei Province and China as a whole. In this study, we examined PAP using a two-way fixed effects model with the cumulative number of medical support personnel and cumulative duration as measurements. The results show personnel and material support played an active role in the nation's response to the COVID-19 public health crisis.


Subject(s)
COVID-19 , COVID-19/epidemiology , China/epidemiology , Humans , Pandemics , Policy , SARS-CoV-2
2.
Gene ; 808: 145963, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1415409

ABSTRACT

As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , COVID-19/physiopathology , Computational Biology/methods , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Genome-Wide Association Study , Host Microbial Interactions/physiology , Host-Pathogen Interactions/genetics , Humans , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
3.
J Transl Med ; 18(1): 321, 2020 08 24.
Article in English | MEDLINE | ID: covidwho-727282

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. METHODS: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program. RESULTS: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian. CONCLUSIONS: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


Subject(s)
Betacoronavirus/physiology , Mutation, Missense , Peptidyl-Dipeptidase A/genetics , Protein Interaction Domains and Motifs/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , Binding Sites/genetics , COVID-19 , Coronavirus Infections/ethnology , Coronavirus Infections/genetics , Coronavirus Infections/virology , DNA Mutational Analysis/methods , Databases, Genetic , Genetic Predisposition to Disease/ethnology , Genetic Variation , Geography , Humans , Models, Molecular , Molecular Docking Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/ethnology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , Protein Binding , Protein Structure, Secondary/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL