Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Commun ; 14(1): 2678, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2316451

ABSTRACT

Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Vaccines , Female , Animals , Mice , Humans , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , COVID-19 Vaccines , Carbon , Cations
2.
Signal Transduct Target Ther ; 8(1): 197, 2023 05 10.
Article in English | MEDLINE | ID: covidwho-2315076

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Amino Acid Sequence , Spike Glycoprotein, Coronavirus , Peptides/genetics
3.
Mol Biomed ; 4(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2262503

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic, induced by newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants, posed great threats to global public health security. There is an urgent need to design effective next­generation vaccines against Omicron lineages. Here, we investigated the immunogenic capacity of the vaccine candidate based on the receptor binding domain (RBD). An RBDß-HR self-assembled trimer vaccine including RBD of Beta variant (containing K417, E484 and N501) and heptad repeat (HR) subunits was developed using an insect cell expression platform. Sera obtained from immunized mice effectively blocked RBD-human angiotensin-converting enzyme 2 (hACE2) binding for different viral variants, showing robust inhibitory activity. In addition, RBDß-HR/trimer vaccine durably exhibited high titers of specific binding antibodies and high levels of cross-protective neutralizing antibodies against newly emerging Omicron lineages, as well as other major variants including Alpha, Beta, and Delta. Consistently, the vaccine also promoted a broad and potent cellular immune response involving the participation of T follicular helper (Tfh) cells, germinal center (GC) B cells, activated T cells, effector memory T cells, and central memory T cells, which are critical facets of protective immunity. These results demonstrated that RBDß-HR/trimer vaccine candidates provided an attractive next-generation vaccine strategy against Omicron variants in the global effort to halt the spread of SARS-CoV-2.

4.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: covidwho-2036822

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
5.
Front Immunol ; 13: 820336, 2022.
Article in English | MEDLINE | ID: covidwho-1933641

ABSTRACT

The continuous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has raised unprecedented challenges to the human society. Antibodies and nanobodies possessing neutralization activity represent promising drug candidates. In this study, we report the identification and characterization of a potent SARS-CoV-2 neutralizing nanobody that targets the viral spike receptor-binding domain (S-RBD). The nanobody, termed as Nb-007, engages SARS-CoV-2 S-RBD with the two-digit picomolar binding affinity and shows outstanding virus entry-inhibition activity. The complex structure of Nb-007 bound to SARS-CoV-2 S-RBD reveals an epitope that is partially overlapping with the binding site for the human receptor of angiotensin-converting enzyme 2 (ACE2). The nanobody therefore exerts neutralization by competing with ACE2 for S-RBD binding, which is further ascertained by our in-vitro biochemical analyses. Finally, we also show that Nb-007 reserves promising, though compromised, neutralization activity against the currently-circulating Delta variant and that fusion of the nanobody with Fc dramatically increases its entry-inhibition capacity. Taken together, these data have paved the way of developing Nb-007 as a drug-reserve for potential treatment of SARS-CoV-2 related diseases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
6.
Emerg Microbes Infect ; 11(1): 1920-1935, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1908682

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related sarbecoviruses enter host cells by receptor-recognition and membrane-fusion. An indispensable step in fusion is the formation of 6-helix bundle by viral spike heptad repeats 1 and 2 (HR1 and HR2). Here, we report the construction of 5-helix bundle (5HB) proteins for virus infection inhibition. The optimal construct inhibits SARS-CoV-2 pseudovirus entry with sub-micromolar IC50. Unlike HR2-based peptides that cannot bind spike in the pre-fusion conformation, 5HB features with the capability of binding to pre-fusion spike. Furthermore, 5HB binds viral HR2 at both serological- and endosomal-pH, highlighting its entry-inhibition capacity when SARS-CoV-2 enters via either cell membrane fusion or endosomal route. Finally, we show that 5HB could neutralize S-mediated entry of the predominant SARS-CoV-2 variants and a wide spectrum of sarbecoviruses. These data provide proof-of-concept evidence that 5HB might be developed for the prevention and treatment of SARS-CoV-2 and other emerging sarbecovirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydrogen-Ion Concentration , Membrane Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization
8.
Signal Transduct Target Ther ; 6(1): 343, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415924

ABSTRACT

SARS-CoV-2 recognizes, via its spike receptor-binding domain (S-RBD), human angiotensin-converting enzyme 2 (ACE2) to initiate infection. Ecto-domain protein of ACE2 can therefore function as a decoy. Here we show that mutations of S19W, T27W, and N330Y in ACE2 could individually enhance SARS-CoV-2 S-RBD binding. Y330 could be synergistically combined with either W19 or W27, whereas W19 and W27 are mutually unbeneficial. The structures of SARS-CoV-2 S-RBD bound to the ACE2 mutants reveal that the enhanced binding is mainly contributed by the van der Waals interactions mediated by the aromatic side-chains from W19, W27, and Y330. While Y330 and W19/W27 are distantly located and devoid of any steric interference, W19 and W27 are shown to orient their side-chains toward each other and to cause steric conflicts, explaining their incompatibility. Finally, using pseudotyped SARS-CoV-2 viruses, we demonstrate that these residue substitutions are associated with dramatically improved entry-inhibition efficacy toward both wild-type and antibody-resistant viruses. Taken together, our biochemical and structural data have delineated the basis for the elevated S-RBD binding associated with S19W, T27W, and N330Y mutations in ACE2, paving the way for potential application of these mutants in clinical treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
9.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1387965

ABSTRACT

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Subject(s)
Biocatalysis , Exoribonucleases/chemistry , Exoribonucleases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Exoribonucleases/genetics , Guanine , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Domains/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
10.
MedComm (2020) ; 2(3): 430-441, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1222647

ABSTRACT

The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.

12.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: covidwho-691301

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL