Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Crit Care Med ; 49(10): 1664-1673, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452743


OBJECTIVES: The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN: Prospective observational study. SETTING: Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS: Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.

Bacterial Infections/diagnosis , RNA, Messenger/analysis , Virus Diseases/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Bacterial Infections/blood , Bacterial Infections/physiopathology , Berlin , Biomarkers/analysis , Biomarkers/blood , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Prospective Studies , RNA, Messenger/blood , ROC Curve , Virus Diseases/blood , Virus Diseases/physiopathology
Intensive Care Med Exp ; 9(1): 31, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1376600


BACKGROUND: Whether or not to administer antibiotics is a common and challenging clinical decision in patients with suspected infections presenting to the emergency department (ED). We prospectively validate InSep, a 29-mRNA blood-based host response test for the prediction of bacterial and viral infections. METHODS: The PROMPT trial is a prospective, non-interventional, multi-center clinical study that enrolled 397 adult patients presenting to the ED with signs of acute infection and at least one vital sign change. The infection status was adjudicated using chart review (including a syndromic molecular respiratory panel, procalcitonin and C-reactive protein) by three infectious disease physicians blinded to InSep results. InSep (version BVN-2) was performed using PAXgene Blood RNA processed and quantified on NanoString nCounter SPRINT. InSep results (likelihood of bacterial and viral infection) were compared to the adjudicated infection status. RESULTS: Subject mean age was 64 years, comorbidities were significant for diabetes (17.1%), chronic obstructive pulmonary disease (13.6%), and severe neurological disease (6.8%); 16.9% of subjects were immunocompromised. Infections were adjudicated as bacterial (14.1%), viral (11.3%) and noninfected (0.25%): 74.1% of subjects were adjudicated as indeterminate. InSep distinguished bacterial vs. viral/noninfected patients and viral vs. bacterial/noninfected patients using consensus adjudication with AUROCs of 0.94 (95% CI 0.90-0.99) and 0.90 (95% CI 0.83-0.96), respectively. AUROCs for bacterial vs. viral/noninfected patients were 0.88 (95% CI 0.79-0.96) for PCT, 0.80 (95% CI 0.72-89) for CRP and 0.78 (95% CI 0.69-0.87) for white blood cell counts (of note, the latter biomarkers were provided as part of clinical adjudication). To enable clinical actionability, InSep incorporates score cutoffs to allocate patients into interpretation bands. The Very Likely (rule in) InSep bacterial band showed a specificity of 98% compared to 94% for the corresponding PCT band (> 0.5 µg/L); the Very Unlikely (rule-out) band showed a sensitivity of 95% for InSep compared to 86% for PCT. For the detection of viral infections, InSep demonstrated a specificity of 93% for the Very Likely band (rule in) and a sensitivity of 96% for the Very Unlikely band (rule out). CONCLUSIONS: InSep demonstrated high accuracy for predicting the presence of both bacterial and viral infections in ED patients with suspected acute infections or suspected sepsis. When translated into a rapid, point-of-care test, InSep will provide ED physicians with actionable results supporting early informed treatment decisions to improve patient outcomes while upholding antimicrobial stewardship. Registration number at NCT03295825.