Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Eur Radiol ; 32(7): 4446-4456, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1707890

ABSTRACT

OBJECTIVES: We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-hospital mortality of COVID-19 patients in the intensive care unit (ICU). METHODS: Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions. Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the best-performing models. RESULTS: A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A model based on all longitudinal CXRs (both pre-ICU and ICU) achieved an AUC of 0.702 and an accuracy of 0.694. A model based on clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732. CONCLUSIONS: The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for COVID-19 patients in the ICU. KEY POINTS: • Deep learning was used to predict mortality in COVID-19 ICU patients. • Serial radiographs and clinical data were used. • The models could inform clinical decision-making and resource allocation.


Subject(s)
COVID-19 , Deep Learning , Humans , Intensive Care Units , Radiography , X-Rays
3.
IEEE/ACM Trans Comput Biol Bioinform ; PP2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1343786

ABSTRACT

Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE) framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL