Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Clin Infect Dis ; 73(6): e1356-e1364, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412019


BACKGROUND: Nosocomial outbreaks with superspreading of coronavirus disease 2019 due to a possible airborne transmission have not been reported. METHODS: Epidemiological analysis, environmental samplings, and whole-genome sequencing (WGS) were performed for a hospital outbreak. RESULTS: A superspreading event that involved 12 patients and 9 healthcare workers (HCWs) occurred within 9 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles. The environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was significantly higher in air grilles (>2 m from patients' heads and not within reach) than on high-touch clinical surfaces (36.4%, 8 of 22 vs 3.4%, 1 of 29, P = .003). Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicles. The clinical attack rate of patients was significantly higher than of HCWs (15.4%, 12 of 78 exposed patients vs 4.6%, 9 of 195 exposed HCWs, P = .005). Moreover, the clinical attack rate of ward-based HCWs was significantly higher than of nonward-based HCWs (8.1%, 7 of 68 vs 1.8%, 2 of 109, P = .045). The episodes (mean ±â€…standard deviation) of patient-care duty assignment in the cubicles was significantly higher among infected ward-based HCWs than among noninfected ward-based HCWs (6.0 ±â€…2.4 vs 3.0 ±â€…2.9, P = .012) during the outbreak period. The outbreak strains belong to SARS-CoV-2 lineage B.1.36.27 (GISAID clade GH) with the unique S-T470N mutation on WGS. CONCLUSIONS: This nosocomial point source superspreading event due to possible airborne transmission demonstrates the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of ventilation systems to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.

COVID-19 , Cross Infection , Cross Infection/epidemiology , Disease Outbreaks , Health Personnel , Hospitals , Humans , SARS-CoV-2
Ther Adv Infect Dis ; 7: 2049936120978095, 2020.
Article in English | MEDLINE | ID: covidwho-962358


BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of individuals since December 2019, resulting in significant morbidity and mortality globally. During the 1918 Influenza Pandemic, it was observed that influenza was associated with bacterial co-infections. However, empirical or prophylactic antibiotic use during viral pandemics should be balanced against the associated adverse drug events. METHODS: In this retrospective cohort study, we investigated bacterial co-infections in adults with COVID-19 in Hong Kong. Notably, at the time of writing this report, patients with varying disease severities were isolated in hospitals until confirmatory evidence of virological clearance or immunity was available. The study included adults with laboratory-confirmed COVID-19 admitted to a single hospital cluster between 8 January 2020 and 1 May 2020. We obtained data regarding patient demographics, clinical presentations, blood test results, treatment, and outcomes. Bacteriological profiles and risk factors for co-infections were investigated. Antibiotic prescription practices were also reviewed. RESULTS: Of the 147 patients recruited, clinical disease was suspected in 42% (n = 62) of patients who underwent testing for other respiratory infections. Notably, 35% (n = 52) of the patients were prescribed empirical antibiotics, predominantly penicillins or cephalosporins. Of these, 35% (n = 18) received more than one class of antibiotics and 37% (n = 19) received empirical antibiotics for over 1 week. Overall, 8.2% (n = 12) of patients developed bacterial co-infections since the detection of COVID-19 until discharge. Methicillin-susceptible Staphylococcus aureus was the most common causative pathogen identified. Although 8.2% (n = 12) of patients developed hypoxia and required oxygen therapy, no mortality was observed. Multivariate analysis showed that pneumonic changes on chest radiography at the time of admission predicted bacterial co-infections. CONCLUSION: These findings emphasise the importance of judicious administration of antibiotics throughout the disease course of COVID-19 and highlight the role of antimicrobial stewardship during a pandemic.