Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Immunol ; 21(10): 1302, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-738125

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Immunol ; 21(10): 1293-1301, 2020 10.
Article in English | MEDLINE | ID: covidwho-720840

ABSTRACT

The SARS-CoV-2 virus emerged in December 2019 and has caused a worldwide pandemic due to the lack of any pre-existing immunity. Accurate serology testing is urgently needed to help diagnose infection, determine past exposure of populations and assess the response to a future vaccine. The landscape of antibody responses to SARS-CoV-2 is unknown. In this study, we utilized the luciferase immunoprecipitation system to assess the antibody responses to 15 different SARS-CoV-2 antigens in patients with COVID-19. We identified new targets of the immune response to SARS-CoV-2 and show that nucleocapsid, open reading frame (ORF)8 and ORF3b elicit the strongest specific antibody responses. ORF8 and ORF3b antibodies, taken together as a cluster of points, identified 96.5% of COVID-19 samples at early and late time points of disease with 99.5% specificity. Our findings could be used to develop second-generation diagnostic tests to improve serological assays for COVID-19 and are important in understanding pathogenicity.

3.
The Lancet Microbe ; 1:e146, 2020.
Article | WHO COVID | ID: covidwho-695453
4.
Emerg Infect Dis ; 26(11)2020 Aug 04.
Article in English | MEDLINE | ID: covidwho-694508

ABSTRACT

We investigated 68 respiratory specimens from 35 coronavirus disease patients in Hong Kong, of whom 32 had mild disease. We found that severe acute respiratory syndrome coronavirus 2 and subgenomic RNA were rarely detectable beyond 8 days after onset of illness. However, virus RNA was detectable for many weeks by reverse transcription PCR.

5.
CMAJ ; 2020 Jul 30.
Article in English | MEDLINE | ID: covidwho-690395

ABSTRACT

BACKGROUND: Unprecedented demand for N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of these masks. We validated a rapidly applicable, lowcost decontamination protocol in compliance with regulatory standards to enable the safe reuse of N95 respirators. METHODS: We inoculated 4 common models of N95 respirators with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evaluated viral inactivation after disinfection for 60 minutes at 70°C and 0% relative humidity. Similarly, we evaluated thermal disinfection at 0% to 70% relative humidity for masks inoculated with Escherichia coli. We assessed masks subjected to multiple cycles of thermal disinfection for structural integrity using scanning electron microscopy and for protective functions using standards of the United States National Institute for Occupational Safety and Health for particle filtration efficiency, breathing resistance and respirator fit. RESULTS: A single heat treatment rendered SARS-CoV-2 undetectable in all mask samples. Compared with untreated inoculated control masks, E. coli cultures at 24 hours were virtually undetectable from masks treated at 70°C and 50% relative humidity (optical density at 600 nm wavelength, 0.02 ± 0.02 v. 2.77 ± 0.09, p < 0.001), but contamination persisted for masks treated at lower relative humidity. After 10 disinfection cycles, masks maintained fibre diameters similar to untreated masks and continued to meet standards for fit, filtration efficiency and breathing resistance. INTERPRETATION: Thermal disinfection successfully decontaminated N95 respirators without impairing structural integrity or function. This process could be used in hospitals and long-term care facilities with commonly available equipment to mitigate the depletion of N95 masks..

6.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: covidwho-261141

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , Viral Load , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL