Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Advanced materials technologies ; 2022.
Article in English | EuropePMC | ID: covidwho-2058093

ABSTRACT

The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID‐19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID‐19 pandemic. The findings demonstrate that a unique fabricated doubly reentrant topology (DRT) structure carries remarkable superrepellent properties against biofouling of protein, blood, bacteria, and viruses. Moreover, this characteristic results from a highly minimized contact area and still exists even if the DRT surface is made of a hydrophilic material, such as silicon oxide.

2.
Adv Mater Technol ; : 2200387, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1976681

ABSTRACT

The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID-19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID-19 pandemic.

3.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055070

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Gene Expression , Induced Pluripotent Stem Cells/cytology , Retina/cytology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cell Culture Techniques , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Organoids/cytology , Organoids/metabolism , Retina/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Virus Internalization
4.
J Chin Med Assoc ; 83(10): 895-897, 2020 10.
Article in English | MEDLINE | ID: covidwho-990893

ABSTRACT

An outbreak of pneumonia associated with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019, and has been spread worldwide rapidly now. Over 5.3-million confirmed cases and 340,000 disease-associated deaths have been found till May 25, 2020. The potential pathophysiology for SARS-CoV-2 to affect the target is via the receptor, angiotensin-converting enzyme 2 (ACE2). ACE2 can be found in the respiratory, cardiovascular, gastrointestinal tract, urinary tract, and reproductive organs such as human ovaries and Leydig cells in the testis. This receptor plays a dominant role in the fertility function. Considering the crucial roles of testicular cells of the male reproductive system, increasing numbers of studies focus on the effects of SARS-CoV-2 on the testis. In this literature, we reviewed several studies to evaluate the relevance between SARS-CoV-2, ACE receptor, and female and male reproductive system and found that the risk of being attacked by SARS-CoV-2 is higher in males than in females. Since men infected with SARS-CoV-2 virus may have the risk of impaired reproductive performance, such as the orchitis and an elevated of luteinizing hormone (LH), and additionally, SARS-CoV-2 virus may be found in semen, although the latter is still debated, all suggest that we should pay much attention to sexual transmitted disease and male fertility after recovering from COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Genitalia/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , COVID-19 , Female , Fertility , Humans , Male , Pandemics , Peptidyl-Dipeptidase A/physiology , SARS-CoV-2 , Sex Characteristics
5.
J Chin Med Assoc ; 83(8): 710-711, 2020 08.
Article in English | MEDLINE | ID: covidwho-733327

ABSTRACT

The pandemic infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is widely increasing the patients affiliated with coronavirus disease 2019 (COVID-19) from last December of 2019. It is reported that the entry receptor of SARS-CoV-2 has been confirmed to be angiotensin-converting enzyme 2 (ACE2). Notably, whether the ACE-related inhibitors or drugs modulated ACE2 activity in affecting the viral activity and disease severity of SARS-CoV-2 is still an open question. Dipeptidyl peptidase-4 (DDP-4), a well-known anti-diabetic drug, has been widely used to control the glycemic condition in patients with diabetes. In this article, we are focusing on the impact of ACE inhibitors (ACEI) and DPP4 inhibitors used on SARS-CoV-2 activity and discussions about those drugs that may be related to infectious condition of COVID-19 diseases.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/etiology , Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Pneumonia, Viral/etiology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19 , Humans , Pandemics , SARS-CoV-2
6.
J Chin Med Assoc ; 83(8): 712-718, 2020 08.
Article in English | MEDLINE | ID: covidwho-733326

ABSTRACT

Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was quickly identified as the causal pathogen leading to the outbreak of SARS-like illness all over the world. As the SARS-CoV-2 infection pandemic proceeds, many efforts are being dedicated to the development of diverse treatment strategies. Increasing evidence showed potential therapeutic agents directly acting against SARS-CoV-2 virus, such as interferon, RNA-dependent RNA polymerase inhibitors, protease inhibitors, viral entry blockers, neuraminidase inhibitor, vaccine, antibody agent targeting the SARS-CoV-2 RNA genome, natural killer cells, and nucleocytoplasmic trafficking inhibitor. To date, several direct anti-SARS-CoV-2 agents have demonstrated promising in vitro and clinical efficacy. This article reviews the current and future development of direct acting agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Development , Pneumonia, Viral/drug therapy , Active Transport, Cell Nucleus/drug effects , Antibodies, Monoclonal/therapeutic use , Betacoronavirus/genetics , COVID-19 , Genome, Viral , Humans , Killer Cells, Natural/immunology , Pandemics , SARS-CoV-2
7.
J Chin Med Assoc ; 83(8): 725-732, 2020 08.
Article in English | MEDLINE | ID: covidwho-709365

ABSTRACT

BACKGROUND: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused severe pneumonia at December 2019. Since then, it has been wildly spread from Wuhan, China, to Asia, European, and United States to become the pandemic worldwide. Now coronavirus disease 2019 were globally diagnosed over 3 084 740 cases with mortality of 212 561 toll. Current reports variants are found in SARS-CoV-2, majoring in functional ribonucleic acid (RNA) to transcribe into structural proteins as transmembrane spike (S) glycoprotein and the nucleocapsid (N) protein holds the virus RNA genome; the envelope (E) and membrane (M) alone with spike protein form viral envelope. The nonstructural RNA genome includes ORF1ab, ORF3, ORF6, 7a, 8, and ORF10 with highly conserved information for genome synthesis and replication in ORF1ab. METHODS: We apply genomic alignment analysis to observe SARS-CoV-2 sequences from GenBank (http://www.ncbi.nim.nih.gov/genebank/): MN 908947 (China, C1); MN985325 (United States: WA, UW); MN996527 (China, C2); MT007544 (Australia: Victoria, A1); MT027064 (United States: CA, UC); MT039890 (South Korea, K1); MT066175 (Taiwan, T1); MT066176 (Taiwan, T2); LC528232 (Japan, J1); and LC528233 (Japan, J2) and Global Initiative on Sharing All Influenza Data database (https://www.gisaid.org). We adopt Multiple Sequence Alignments web from Clustalw (https://www.genome.jp/tools-bin/clustalw) and Geneious web (https://www.geneious.com. RESULTS: We analyze database by genome alignment search for nonstructural ORFs and structural E, M, N, and S proteins. Mutations in ORF1ab, ORF3, and ORF6 are observed; specific variants in spike region are detected. CONCLUSION: We perform genomic analysis and comparative multiple sequence of SARS-CoV-2. Large scaling sequence alignments trace to localize and catch different mutant strains in United possibly to transmit severe deadly threat to humans. Studies about the biological symptom of SARS-CoV-2 in clinic animal and humans will be applied and manipulated to find mechanisms and shield the light for understanding the origin of pandemic crisis.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , Open Reading Frames , Spike Glycoprotein, Coronavirus/physiology , Humans , Phylogeny , Point Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
8.
J Chin Med Assoc ; 83(8): 704-709, 2020 08.
Article in English | MEDLINE | ID: covidwho-338268

ABSTRACT

The novel coronavirus disease 2019 (COVID-19), with first presentation of atypical pneumonia, has spread rapidly from Wuhan, China, on December 12, 2019 to over 200 countries, caused 2 310 572 infected individuals and 158 691 mortalities, updated on April 19, 2020. Many studies have published timely to help global healthcare workers to understand and control the disease. Vulnerable patients with risk factors such as elderly, cardiovascular diseases (eg, hypertension, coronary disease, or cardiomyopathy), diabetes, and chronic kidney disease have worse outcomes after COVID-19 infection. COVID-19 could directly cause cardiovascular injuries such as pericarditis, myocarditis, myocardial infarction, heart failure, arrhythmias, or thromboembolic events, which urge cardiologists to be involved in the frontline to practice. Here, we provide a review of COVID-19 on cardiovascular system to assist clinical cardiologists to better understand the disease and being capable of providing comprehensive medical support.


Subject(s)
Betacoronavirus , Cardiovascular Diseases/etiology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Humans , Hydroxychloroquine/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pandemics , SARS-CoV-2
9.
Int J Mol Sci ; 21(7)2020 Apr 10.
Article in English | MEDLINE | ID: covidwho-46057

ABSTRACT

The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) in Wuhan, China, which rapidly grew into a global pandemic, marked the third introduction of a virulent coronavirus into the human society, affecting not only the healthcare system, but also the global economy. Although our understanding of coronaviruses has undergone a huge leap after two precedents, the effective approaches to treatment and epidemiological control are still lacking. In this article, we present a succinct overview of the epidemiology, clinical features, and molecular characteristics of SARS-CoV-2. We summarize the current epidemiological and clinical data from the initial Wuhan studies, and emphasize several features of SARS-CoV-2, which differentiate it from SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), such as high variability of disease presentation. We systematize the current clinical trials that have been rapidly initiated after the outbreak of COVID-19 pandemic. Whereas the trials on SARS-CoV-2 genome-based specific vaccines and therapeutic antibodies are currently being tested, this solution is more long-term, as they require thorough testing of their safety. On the other hand, the repurposing of the existing therapeutic agents previously designed for other virus infections and pathologies happens to be the only practical approach as a rapid response measure to the emergent pandemic, as most of these agents have already been tested for their safety. These agents can be divided into two broad categories, those that can directly target the virus replication cycle, and those based on immunotherapy approaches either aimed to boost innate antiviral immune responses or alleviate damage induced by dysregulated inflammatory responses. The initial clinical studies revealed the promising therapeutic potential of several of such drugs, including favipiravir, a broad-spectrum antiviral drug that interferes with the viral replication, and hydroxychloroquine, the repurposed antimalarial drug that interferes with the virus endosomal entry pathway. We speculate that the current pandemic emergency will be a trigger for more systematic drug repurposing design approaches based on big data analysis.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections , Immunologic Factors/therapeutic use , Pandemics , Pneumonia, Viral , Viral Vaccines , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/virology , Genome, Viral , Humans , Immunization, Passive , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL