Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Int J Pharm ; 603: 120701, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1225261

ABSTRACT

In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide's limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.


Subject(s)
COVID-19 , Niclosamide , Administration, Inhalation , Aerosols , Animals , Cricetinae , Dry Powder Inhalers , Freezing , Humans , Particle Size , Powders , Rats , SARS-CoV-2
2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1129732

ABSTRACT

BACKGROUND: Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary process triggered by a variety of insults including sepsis, viral or bacterial pneumonia, and mechanical ventilator-induced trauma. Currently, there are no effective therapies available for ARDS. We have recently reported that a novel small molecule AVR-25 derived from chitin molecule (a long-chain polymer of N-acetylglucosamine) showed anti-inflammatory effects in the lungs. The goal of this study was to determine the efficacy of two chitin-derived compounds, AVR-25 and AVR-48, in multiple mouse models of ALI/ARDS. We further determined the safety and pharmacokinetic (PK) profile of the lead compound AVR-48 in rats. METHODS: ALI in mice was induced by intratracheal instillation of a single dose of lipopolysaccharide (LPS; 100 µg) for 24 h or exposed to hyperoxia (100% oxygen) for 48 h or undergoing cecal ligation and puncture (CLP) procedure and observation for 10 days. RESULTS: Both chitin derivatives, AVR-25 and AVR-48, showed decreased neutrophil recruitment and reduced inflammation in the lungs of ALI mice. Further, AVR-25 and AVR-48 mediated diminished lung inflammation was associated with reduced expression of lung adhesion molecules with improvement in pulmonary endothelial barrier function, pulmonary edema, and lung injury. Consistent with these results, CLP-induced sepsis mice treated with AVR-48 showed a significant increase in survival of the mice (80%) and improved lung histopathology in the treated CLP group. AVR-48, the lead chitin derivative compound, demonstrated a good safety profile. CONCLUSION: Both AVR-25 and AVR-48 demonstrate the potential to be developed as therapeutic agents to treat ALI/ARDS.


Subject(s)
Acute Lung Injury/drug therapy , Immunologic Factors/pharmacology , Respiratory Distress Syndrome/drug therapy , Small Molecule Libraries/pharmacology , Animals , Chitin/pharmacology , Disease Models, Animal , Female , Lipopolysaccharides/pharmacology , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Pneumonia/drug therapy , Pulmonary Edema/drug therapy , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy
3.
Int J Pharm X ; 3: 100073, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1103975

ABSTRACT

Remdesivir dry powder for inhalation was previously developed using thin film freezing (TFF). A single-dose 24-h pharmacokinetic study in hamsters demonstrated that pulmonary delivery of TFF remdesivir can achieve plasma remdesivir and GS-441524 levels higher than the reported EC50s of both remdesivir and GS-441524 (in human epithelial cells) over 20 h. The half-life of GS-4412524 following dry powder insufflation was about 7 h, suggesting the dosing regimen would be twice-daily administration. Although the remdesivir-Captisol® (80/20 w/w) formulation showed faster and greater absorption of remdesivir and GS-4412524 in the lung, remdesivir-leucine (80/20 w/w) exhibited a greater Cmax with shorter Tmax and lower AUC of GS-441524, indicating lower total drug exposure is required to achieve a high effective concentration against SAR-CoV-2. In conclusion, remdesivir dry powder for inhalation would be a promising alternative dosage form for the treatment of COVID-19 disease.

4.
Pharmaceutics ; 12(11)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-1006936

ABSTRACT

Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for emergency use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared into respirable low-density microparticles upon aerosolization from a passive dry powder inhaler. In vitro aerodynamic testing demonstrated that drug loading and excipient type affected the aerosol performance of remdesivir. Remdesivir combined with optimal excipients exhibited desirable aerosol performance (up to 93.0% FPF< 5 µm; 0.82 µm mass median aerodynamic diameter). Remdesivir was amorphous after the TFF process, which benefitted drug dissolution in simulated lung fluid. TFF remdesivir formulations are stable after one month of storage at 25 °C/60% relative humidity. An in vivo pharmacokinetic evaluation showed that TFF remdesivir-leucine was poorly absorbed into systemic circulation while TFF remdesivir-Captisol® demonstrated increased systemic uptake compared to leucine. Remdesivir was hydrolyzed to the nucleoside analog GS-441524 in the lung, and levels of GS-441524 were greater in the lung with leucine formulation compared to Captisol®. In conclusion, TFF technology produces high-potency remdesivir dry powder formulations for inhalation that are suitable to treat patients with COVID-19 on an outpatient basis and earlier in the disease course where effective antiviral therapy can reduce related morbidity and mortality.

5.
Pharmaceutics ; 12(11):1002, 2020.
Article in English | MDPI | ID: covidwho-884368

ABSTRACT

Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for emergency use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared into respirable low-density microparticles upon aerosolization from a passive dry powder inhaler. In vitro aerodynamic testing demonstrated that drug loading and excipient type affected the aerosol performance of remdesivir. Remdesivir combined with optimal excipients exhibited desirable aerosol performance (up to 93.0% FPF<5 µm;0.82 µm mass median aerodynamic diameter). Remdesivir was amorphous after the TFF process, which benefitted drug dissolution in simulated lung fluid. TFF remdesivir formulations are stable after one month of storage at 25 °C/60% relative humidity. An in vivo pharmacokinetic evaluation showed that TFF remdesivir–leucine was poorly absorbed into systemic circulation while TFF remdesivir-Captisol®demonstrated increased systemic uptake compared to leucine. Remdesivir was hydrolyzed to the nucleoside analog GS-441524 in the lung, and levels of GS-441524 were greater in the lung with leucine formulation compared to Captisol®. In conclusion, TFF technology produces high-potency remdesivir dry powder formulations for inhalation that are suitable to treat patients with COVID-19 on an outpatient basis and earlier in the disease course where effective antiviral therapy can reduce related morbidity and mortality.

SELECTION OF CITATIONS
SEARCH DETAIL