Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Document Type
Year range
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.15.22276423


Structured summary Background Whole genome sequencing (WGS) for managing healthcare associated infections (HCAIs) has developed considerably through experiences with SARS-CoV-2. We interviewed various healthcare professionals (HCPs) with direct experience of using WGS in hospitals (within the COG-UK Hospital Onset COVID-19 Infection (HOCI) study) to explore its acceptability and future use. Method An exploratory, cross-sectional, qualitative design employed semi-structured interviews with 39 diverse HCPs between December 2020 and June 2021. Participants were recruited from five sites within the larger clinical study of a novel genome sequencing reporting tool for SARS-CoV-2 (the HOCI study). All had experience, in their diverse roles, of using sequencing data to manage nosocomial SARS-CoV-2 infection. Deductive and inductive thematic analysis identified themes exploring aspects of the acceptability of sequencing. Findings The analysis highlighted the overall acceptability of rapid WGS for infectious disease using SARS-CoV-2 as a case study. Diverse professionals were largely very positive about its future use and believed that it could become a valuable and routine tool for managing HCAIs. We identified three key themes ‘1) ‘Proof of concept achieved’; 2) ‘Novel insights and implications’; and 3) ‘Challenges and demands’. Conclusion Our qualitative analysis, drawn from five diverse hospitals, shows the broad acceptability of rapid sequencing and its potential. Participants believed it could and should become an everyday technology capable of being embedded within typical hospital processes and systems. However, its future integration into existing healthcare systems will not be without challenges (e.g., resource, multi-level change) warranting further mixed methods research.

medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270799


Introduction Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

authorea preprints; 2021.


Introduction: Hospital-acquired infection with COVID-19 (HAI) has reduced from 14.3% to 4.2% over the last year, but substantial differences still exist between English NHS trusts. Methods: We assessed rates of HAI, comparing trusts using airborne respiratory protection (RPE, eg FFP3 masks) for all staff, as a marker of measures to reduce airborne spread, against those using mostly droplet precautions (eg surgical masks). Results: /Discussion RPE use was associated with a 33% reduction in HAI odds in the Delta wave, and 21% in the Alpha wave (p<0.00001). We recommend all hospitals make airborne mitigations a priority.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.13.21255342


IntroductionNosocomial transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a significant cause of mortality in National Health Service (NHS) hospitals during the coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to evaluate the impact of rapid whole genome sequencing of SARS-CoV-2, supported by a novel probabilistic reporting methodology, to inform infection prevention and control (IPC) practice within NHS hospital settings. Methods and analysisCOG-UK HOCI (COG-UK Consortium Hospital-Onset COVID-19 Infections study) is a multicentre, prospective, interventional, superiority study. Eligible patients must be admitted to hospital with first confirmed SARS-CoV-2 PCR positive test result >48h from time of admission, where COVID-19 diagnosis was not suspected upon admission. The projected sample size for 14 participating sites covering all study phases over winter-spring 2020/2021 in the United Kingdom is 2,380 patients. The intervention is the return of a sequence report, within 48 hours in one phase (rapid local lab) and within 5-10 days in a second phase (mimicking central lab use), comparing the viral genome from an eligible study participant with others within and outside the hospital site. The primary outcomes are the incidence of Public Health England (PHE)/IPC-defined SARS-CoV-2 hospital-acquired infection during the baseline and two interventional phases, and proportion of hospital-onset cases with genomic evidence of transmission linkage following implementation of the intervention where such linkage was not suspected by initial IPC investigation. Secondary outcomes include incidence of hospital outbreaks, with and without sequencing data; actual and desirable changes to IPC actions; periods of healthcare worker (HCW) absence. A process evaluation using qualitative interviews with HCWs will be conducted alongside the study and analysis, underpinned by iterative programme theory of the sequence report. Health economic analysis will be conducted to determine cost-benefit of the intervention, and whether this leads to economic advantages within the NHS setting. Ethics and disseminationThe protocol has been approved by the National Research Ethics Service Committee (Cambridge South 20/EE/0118). This manuscript is based on version 5.0 of the protocol. The study findings will be disseminated through peer-reviewed publications. Study Registration numberISRCTN50212645 Strengths and limitations of this studyO_LIThe COG-UK HOCI study harnesses the infrastructure of the UKs existing national COVID-19 genome sequencing platform to evaluate the specific benefit of sequencing to hospital infection control. C_LIO_LIThe evaluation is thought to be the first interventional study globally to assess effectiveness of genomic sequencing for infection control in an unbiased patient selection in secondary care settings. C_LIO_LIA range of institutional settings will participate, from specialist NHS-embedded or academic centres experienced in using pathogen genomics to district general hospitals. C_LIO_LIThe findings are likely to have wider applicability in future decisions to utilise genome sequencing for infection control of other pathogens (such as influenza, respiratory syncytial virus, norovirus, clostridium difficile and antimicrobial resistant pathogens) in secondary care settings. C_LIO_LIThe study has been awarded UK NIHR Urgent Public Health status, ensuring prioritised access to NIHR Clinical Research Network (CRN) research staff to recruit patients. C_LIO_LIThe study does not have a randomised controlled design due to the logistics of managing this against diverse standard practice. C_LI

medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.12.20230326


Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hours following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time-from-admission [≥]8 days the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time-from-admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.