ABSTRACT
Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline we show that herbicide resistant (HR) and herbicide sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters and glutathione transferases including AmGSTF1. eccDNA content was mapped to the Alopecurus myosuroides reference genome, revealing genomic regions at distal end of chromosome 5 and the near center of chromosome 1 and 7 as regions with high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed the eccDNA coding sequences match 12 with four QLT matching HS coding sequences one region only contained HR coding sequences. These findings establish that like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses including herbicide treatment.
Subject(s)
Disease Resistance , Insulin ResistanceABSTRACT
During the rapid deployment of COVID-19 vaccines in 2021, safety concerns may have led some pregnant individuals to postpone vaccination until after giving birth. This study aimed to describe temporal patterns and factors associated with COVID-19 vaccine series initiation after recent pregnancy in Ontario, Canada. Using the provincial birth registry linked with the COVID-19 vaccine database, we identified all individuals who gave birth between January 1 and December 31, 2021, and had not yet been vaccinated by the end of pregnancy, and followed them to June 30, 2022 (follow-up ranged from 6 to 18 months). We used cumulative incidence curves to describe COVID-19 vaccine initiation after pregnancy and assessed associations with sociodemographic, pregnancy-related, and health behavioral factors using Cox proportional hazards regression to estimate adjusted hazard ratios (aHR) and 95% confidence intervals (CI). Among 137,198 individuals who gave birth in 2021, 87,376 (63.7%) remained unvaccinated at the end of pregnancy; of these, 65.0% initiated COVID-19 vaccination by June 30, 2022. Lower maternal age (<25 vs. 30-34 y aHR: 0.73, 95%CI: 0.70-0.77), smoking during pregnancy (vs. nonsmoking aHR: 0.68, 95%CI: 0.65-0.72), lower neighborhood income (lowest quintile vs. highest aHR: 0.79, 95%CI: 0.76-0.83), higher material deprivation (highest quintile vs. lowest aHR: 0.74, 95%CI: 0.70-0.79), and exclusive breastfeeding (vs. other feeding aHR: 0.81, 95%CI: 0.79-0.84) were associated with lower likelihood of vaccine initiation. Among unvaccinated individuals who gave birth in 2021, COVID-19 vaccine initiation after pregnancy reached 65% by June 30, 2022, suggesting persistent issues with vaccine hesitancy and/or access to vaccination in this population.
Subject(s)
COVID-19 Vaccines , COVID-19 , Pregnancy , Female , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cognition , Databases, Factual , Ontario/epidemiology , VaccinationABSTRACT
INTRODUCTION: There are limited data on the outcomes of COVID-19 risk assessment in healthcare workers (HCWs) or the association of ethnicity, other sociodemographic and occupational factors with risk assessment outcomes. METHODS: We used questionnaire data from UK-REACH (UK Research study into Ethnicity And COVID-19 outcomes in Healthcare workers), an ethnically diverse, nationwide cohort of UK HCWs. We derived four binary outcomes: (1) offered a risk assessment; (2) completed a risk assessment; (3) working practices changed as a result of the risk assessment; (4) wanted changes to working practices after risk assessment but working practices did not change.We examined the association of ethnicity, other sociodemographic/occupational factors and actual/perceived COVID-19 risk variables on our outcomes using multivariable logistic regression. RESULTS: 8649 HCWs were included in total. HCWs from ethnic minority groups were more likely to report being offered a risk assessment than white HCWs, and those from Asian and black ethnic groups were more likely to report having completed an assessment if offered. Ethnic minority HCWs had lower odds of reporting having their work change as a result of risk assessment. Those from Asian and black ethnic groups were more likely to report no changes to their working practices despite wanting them.Previous SARS-CoV-2 infection was associated with lower odds of being offered a risk assessment and having adjustments made to working practices. DISCUSSION: We found differences in risk assessment outcomes by ethnicity, other sociodemographic/occupational factors and actual/perceived COVID-19 risk factors. These findings are concerning and warrant further research using actual (rather than reported) risk assessment outcomes in an unselected cohort.
Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Cross-Sectional Studies , SARS-CoV-2 , Ethnicity , Minority Groups , Health Personnel , Risk Assessment , United Kingdom/epidemiologyABSTRACT
The COVID-19 pandemic has highlighted the need for further research evaluating the validity of conducting a battery of neuropsychological assessments virtually compared with face-to-face administration. Previous research has suggested that some neuropsychological assessments yield valid results when administered virtually, however, much of the previous research focused on older adults. To determine the validity of virtually administered neuropsychological tests, 28 healthy participants were assessed using a within-subjects, counter-balanced design. Participants completed a neuropsychological assessment battery covering tests of general intellectual functioning, memory and attention, executive functioning, language and information processing speed, as well as effort. There was no significant difference between face-to-face administration of the neuropsychological battery compared with virtual administration for the majority of the tests used. However, there were significant differences in the Colour Naming Task, with participants making fewer errors on the colour naming task and inhibition/switching task when administered virtually compared with face-to-face administration. There was also a significant age cohort effect in the inhibition/switching task. There was also a trending significant difference in mode of administration for the Verbal Fluency Task. Virtually administered neuropsychological assessments largely provide a valid alternative to face-to-face assessments; however, consideration must be given to test selection as well as the population of participants that are being assessed. Other important considerations must focus on preserving the security and integrity of test materials, as well as administration in a medico-legal setting. Future research should focus on validating assessments with specific patient populations and developing a neuropsychological assessment battery using information technology.
ABSTRACT
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured vs. native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of glycopeptides has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric pre-fusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural re-arrangements. Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.
ABSTRACT
OBJECTIVE: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. "Personalized" FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described COVID-19 diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations. MATERIALS AND METHODS: We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the FedAvg algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, FedAMP). RESULTS: We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, p = 0.5) and improved model generalizability with the FedAvg model (p < 0.05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation. CONCLUSION: FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.
ABSTRACT
BACKGROUND: We sought to evaluate whether race/ethnicity disparities in severe COVID-19 outcomes persist in the era of vaccination. METHODS: Population-based age-adjusted monthly rate ratios (RR) of laboratory-confirmed COVID-19-asssociated hospitalizations were calculated among adult patients from COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) during March 2020 - August 2022, by race/ethnicity. Among randomly sampled patients, July 2021-August 2022, RRs for hospitalization, intensive care unit (ICU) admission, and in-hospital mortality were calculated for Hispanic, Black, American Indian/Alaskan Native (AI/AN), and Asian/Pacific Islander (API) versus White persons. RESULTS: Based on data from 353,807 hospitalized patients, hospitalization rates were higher among Hispanic, Black and AI/AN versus White persons during March 2020 - August 2022, yet the magnitude of the disparities declined over time (for Hispanic, RR=6.7; 95%CI: 6.5-7.1 in June 2020 vs RR<2.0 after July 2021; for AI/AN, RR=8.4; 95%CI: 8.2-8.7in May 2020 vs RR<2.0 after March 2022; and for Black persons RR=5.3; 95%CI: 4.6-4.9 in July 2020 vs RR<2.0 after February 2022; all p≤0.001). Among 8,706 sampled patients during July 2021 - August 2022, hospitalization and ICU admission RRs were higher for Hispanic, Black, and AI/AN (range for both hospitalization and ICU admission: 1.4-2.4) and lower for API (range for both: 0.6-0.9) versus White persons. All other race and ethnicity groups had higher in-hospital mortality rates versus White persons (RR range: 1.4-2.9). CONCLUSIONS: Race/ethnicity disparities in COVID-19-associated hospitalizations declined but persist in the era of vaccination. Developing strategies to ensure equitable access to vaccination and treatment remains important.
ABSTRACT
Glucocorticoids, also known as steroids, are a class of anti-inflammatory drugs utilised widely in clinical practice for a variety of conditions. They are associated with a range of side effects including abnormalities of glucose metabolism. Multiple guidelines have been published to illustrate best management of glucocorticoid-induced hyperglycaemia and diabetes in a variety of settings. This article discusses current best clinical practice including diagnosis, investigations and ongoing management of glucocorticoid-induced dysglycaemia in both in- and outpatient settings.
ABSTRACT
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitors, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, block respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We used a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptides to the respiratory tract and demonstrated the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevented MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional shield which complements vaccination to fight against respiratory infection, presenting a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure, that can be readily translated to human trials.
ABSTRACT
PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.
Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/therapy , Hospital Mortality , Humans , Observational Studies as Topic , Prognosis , SARS-CoV-2 , State Medicine , World Health OrganizationABSTRACT
The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Asparagine , Integrin alphaVbeta3ABSTRACT
One of the furthermost intimidations that the death faced after the second World War is 2019-nCoV epidemic and most crucial large-scale health disaster of this century. We devote the current work to discuss the epidemic prediction for the epidemic model created for 2019-nCoV in Wuhan, China by certain approximate analytical methods such as differential transform method and variational iteration method. Further, we recognize unreported cases in numbers and the parameters of model are due to reported case data. For the considered system demonstrating the model of coronavirus, the series solution is conventional in the structure of the differential transform method. The obtained solutions are discussed in figures which show the performance of considered model. The results show that the used schemes are definite and trouble-free to execution for the system of nonlinear ODEs. The solutions exposed that the both schemes are in total agreement, correct and well-organized for solving systems of nonlinear differential equations.
ABSTRACT
Research shows that citizens' trust in government is associated with lower vaccine hesitancy and an increased willingness to follow public health measures. Thus far, however, the population health literature has largely conceptualized "government" as a unitary actor. This article furthers our understanding of this relationship by examining two important features of modern governance that have largely gone unexamined: (1) that governing involves popularly elected politicians and appointed bureaucrats; and (2), that governing often comprises many levels of government within the same country. Analyzing survey data from Canada with various multivariate regression models, this article finds that the relationship political trust has with vaccine hesitancy and intention to follow for public health measures is more complex than presently recognized. Specifically, a larger change in citizens' public health behaviors is associated with trust in public health officials than with trust in government, and of particular importance is trust in national public health authorities, despite the fact that public health measures in Canada are largely the jurisdiction of subnational governments. The implications of these findings for population health research and policymakers are discussed.
ABSTRACT
Background: Few studies have compared SARS-CoV-2 vaccine immunogenicity by ethnic group. We sought to establish whether cellular and humoral immune responses to SARS-CoV-2 vaccination differ according to ethnicity in UK Healthcare workers (HCWs). Methods: In this cross-sectional analysis, we used baseline data from two immunological cohort studies conducted in HCWs in Leicester, UK. Blood samples were collected between March 3, and September 16, 2021. We excluded HCW who had not received two doses of SARS-CoV-2 vaccine at the time of sampling and those who had serological evidence of previous SARS-CoV-2 infection. Outcome measures were SARS-CoV-2 spike-specific total antibody titre, neutralising antibody titre and ELISpot count. We compared our outcome measures by ethnic group using univariable (t tests and rank-sum tests depending on distribution) and multivariable (linear regression for antibody titres and negative binomial regression for ELISpot counts) tests. Multivariable analyses were adjusted for age, sex, vaccine type, length of interval between vaccine doses and time between vaccine administration and sample collection and expressed as adjusted geometric mean ratios (aGMRs) or adjusted incidence rate ratios (aIRRs). To assess differences in the early immune response to vaccination we also conducted analyses in a subcohort who provided samples between 14 and 50 days after their second dose of vaccine. Findings: The total number of HCWs in each analysis were 401 for anti-spike antibody titres, 345 for neutralising antibody titres and 191 for ELISpot. Overall, 25.4% (19.7% South Asian and 5.7% Black/Mixed/Other) were from ethnic minority groups. In analyses including the whole cohort, neutralising antibody titres were higher in South Asian HCWs than White HCWs (aGMR 1.47, 95% CI [1.06-2.06], P = 0.02) as were T cell responses to SARS-CoV-2 S1 peptides (aIRR 1.75, 95% CI [1.05-2.89], P = 0.03). In a subcohort sampled between 14 and 50 days after second vaccine dose, SARS-CoV-2 spike-specific antibody and neutralising antibody geometric mean titre (GMT) was higher in South Asian HCWs compared to White HCWs (9616 binding antibody units (BAU)/ml, 95% CI [7178-12,852] vs 5888 BAU/ml [5023-6902], P = 0.008 and 2851 95% CI [1811-4487] vs 1199 [984-1462], P < 0.001 respectively), increments which persisted after adjustment (aGMR 1.26, 95% CI [1.01-1.58], P = 0.04 and aGMR 2.01, 95% CI [1.34-3.01], P = 0.001). SARS-CoV-2 ELISpot responses to S1 and whole spike peptides (S1 + S2 response) were higher in HCWs from South Asian ethnic groups than those from White groups (S1: aIRR 2.33, 95% CI [1.09-4.94], P = 0.03; spike: aIRR, 2.04, 95% CI [1.02-4.08]). Interpretation: This study provides evidence that, in an infection naïve cohort, humoral and cellular immune responses to SARS-CoV-2 vaccination are stronger in South Asian HCWs than White HCWs. These differences are most clearly seen in the early period following vaccination. Further research is required to understand the underlying mechanisms, whether differences persist with further exposure to vaccine or virus, and the potential impact on vaccine effectiveness. Funding: DIRECT and BELIEVE have received funding from UK Research and Innovation (UKRI) through the COVID-19 National Core Studies Immunity (NCSi) programme (MC_PC_20060).
ABSTRACT
BACKGROUND: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. METHODS: The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer-BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. RESULTS: Among the 817 participants included in this report, the median age was 72 years (IQR: 55-78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26. COV2. S (Janssen; hereafter referred to as Ad26) showed slower decay. For people who received BNT/BNT as their initial doses, a slower decay was also seen in the Ad26 and ChAd arms. The anti-spike IgG became significantly higher in the Ad26 arm compared to the BNT arm as early as 3 months following vaccination. Similar decay rates were seen between BNT and half-BNT; the geometric mean ratios ranged from 0.76 to 0.94 at different time points. The difference in decay rates between vaccines was similar for wild-type live virus-neutralising antibodies and that seen for anti-spike IgG. For cellular responses, the persistence was similar between study arms. CONCLUSIONS: Heterologous third doses with viral vector vaccines following two doses of mRNA achieve more durable humoral responses compared with three doses of mRNA vaccines. Lower doses of mRNA vaccines could be considered for future booster campaigns.
Subject(s)
COVID-19 , Viral Vaccines , Female , Humans , Aged , Male , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , SARS-CoV-2 , Immunity , United Kingdom , Immunoglobulin G , Antibodies, Viral , Vaccination , Immunogenicity, VaccineABSTRACT
The Coronavirus Disease of 2019 (COVID-19) pandemic has been a challenging event for laboratory medicine and diagnostics manufacturers. We have had to confront numerous unique and previously unthinkable issues on a daily basis in order to continue offering diagnostic testing for not only Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), but other testing that was significantly impacted by supply chain and staffing disruptions related to COVID-19. Out of this tremendously stressful and, at times, chaotic environment, decades of innovations and advances in testing methodologies and instrumentation became essential to handle the overwhelming volume of samples with clinically appropriate turn-around-time. Additionally, a number of novel testing approaches and technological innovations emerged to address laboratory and public health needs for widespread testing. In this review we consider both technological advances in infectious diseases testing and other innovations in sample collection, processing, automation, workflow, and testing that have embodied the laboratory response to the COVID-19 pandemic.
ABSTRACT
AIMS: This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type and contact time. METHODS AND RESULTS: Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminium, plastic, stainless steel, touchscreen, vinyl and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite) and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20 and 1.67 ± 1.21 for plastic, touchscreen and vinyl, respectively. CONCLUSIONS: Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the persistence of Φ6 on fomites has been characterized, limited data are available regarding the transfer of Φ6 among skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.
Subject(s)
Bacteriophages , Humans , Fomites , Stainless Steel , PlasticsABSTRACT
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.