Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
BMJ Evid Based Med ; 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1794512

ABSTRACT

OBJECTIVES: To evaluate the development and quality of actionable statements that qualify as good practice statements (GPS) reported in COVID-19 guidelines. DESIGN AND SETTING: Systematic review . We searched MEDLINE, MedSci, China National Knowledge Infrastructure (CNKI), databases of Grading of Recommendations Assessment, Development and Evaluation (GRADE) Guidelines, NICE, WHO and Guidelines International Network (GIN) from March 2020 to September 2021. We included original or adapted recommendations addressing any COVID-19 topic. MAIN OUTCOME MEASURES: We used GRADE Working Group criteria for assessing the appropriateness of issuing a GPS: (1) clear and actionable; (2) rationale necessitating the message for healthcare practice; (3) practicality of systematically searching for evidence; (4) likely net positive consequences from implementing the GPS and (5) clear link to the indirect evidence. We assessed guideline quality using the Appraisal of Guidelines for Research and Evaluation II tool. RESULTS: 253 guidelines from 44 professional societies issued 3726 actionable statements. We classified 2375 (64%) as GPS; of which 27 (1%) were labelled as GPS by guideline developers. 5 (19%) were labelled as GPS by their authors but did not meet GPS criteria. Of the 2375 GPS, 85% were clear and actionable; 59% provided a rationale necessitating the message for healthcare practice, 24% reported the net positive consequences from implementing the GPS. Systematic collection of evidence was deemed impractical for 13% of the GPS, and 39% explained the chain of indirect evidence supporting GPS development. 173/2375 (7.3%) statements explicitly satisfied all five criteria. The guidelines' overall quality was poor regardless of the appropriateness of GPS development and labelling. CONCLUSIONS: Statements that qualify as GPS are common in COVID-19 guidelines but are characterised by unclear designation and development processes, and methodological weaknesses.

2.
BMJ Evid Based Med ; 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1794511

ABSTRACT

An evidence-based approach is considered the gold standard for health decision-making. Sometimes, a guideline panel might judge the certainty that the desirable effects of an intervention clearly outweigh its undesirable effects as high, but the body of supportive evidence is indirect. In such cases, the application of the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach for grading the strength of recommendations is inappropriate. Instead, the GRADE Working Group has recommended developing ungraded best or good practice statement (GPS) and developed guidance under which circumsances they would be appropriate.Through an evaluation of COVID-1- related recommendations on the eCOVID Recommendation Map (COVID-19.recmap.org), we found that recommendations qualifying a GPS were widespread. However, guideline developers failed to label them as GPS or transparently report justifications for their development. We identified ways to improve and facilitate the operationalisation and implementation of the GRADE guidance for GPS.Herein, we propose a structured process for the development of GPSs that includes applying a sequential order for the GRADE guidance for developing GPS. This operationalisation considers relevant evidence-to-decision criteria when assessing the net consequences of implementing the statement, and reporting information supporting judgments for each criterion. We also propose a standardised table to facilitate the identification of GPS and reporting of their development. This operationalised guidance, if endorsed by guideline developers, may palliate some of the shortcomings identified. Our proposal may also inform future updates of the GRADE guidance for GPS.

3.
J Clin Epidemiol ; 2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1757507

ABSTRACT

OBJECTIVE: To describe divergence between actionable statements issued by COVID-19 guideline developers catalogued on the "COVID-19 Recommendations and Gateway to Contextualization" platform. STUDY DESIGN AND SETTING: We defined divergence as at least two comparable actionable statements with different explicit judgements of strength, direction or subgroup consideration of the population or intervention. We applied content analysis to compare guideline development methods for a sample of diverging statements and to evaluate factors associated with divergence. RESULTS: Of the 138 guidelines evaluated, 85 (62%) contained at least one statement that diverged from another guideline. We identified 223 diverging statements in these 85 guidelines. We grouped statements into 66 clusters. Each cluster addressed the same population, intervention, and comparator group or just similar interventions. Clinical practice statements were more likely to diverge in explicit judgment of strength or direction compared to public health statements (Cramer's V = 0.7, Fisher's exact test; P <0.001). Statements were more likely to diverge in strength than direction. Date of publication, utilized evidence, interpretation of evidence, and contextualization considerations were associated with divergence. CONCLUSION: More than half of the assessed guidelines issued at least one diverging statement. This study helps understanding the types of differences between guidelines issuing comparable statements and factors associated with their divergence.

4.
BMJ Open ; 12(3): e048502, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1723715

ABSTRACT

BACKGROUND: To summarise specific adverse effects of remdesivir, hydroxychloroquine and lopinavir/ritonavir in patients with COVID-19. METHODS: We searched 32 databases through 27 October 2020. We included randomised trials comparing any of the drugs of interest to placebo or standard care, or against each other. We conducted fixed-effects pairwise meta-analysis and assessed the certainty of evidence using the grading of recommendations assessment, development and evaluation approach. RESULTS: We included 16 randomised trials which enrolled 8152 patients. For most interventions and outcomes the certainty of the evidence was very low to low except for gastrointestinal adverse effects from hydroxychloroquine, which was moderate certainty. Compared with standard care or placebo, low certainty evidence suggests that remdesivir may not have an important effect on acute kidney injury (risk difference (RD) 8 fewer per 1000, 95% CI 27 fewer to 21 more) or cognitive dysfunction/delirium (RD 3 more per 1000, 95% CI 12 fewer to 19 more). Low certainty evidence suggests that hydroxychloroquine may increase the risk of cardiac toxicity (RD 10 more per 1000, 95% CI 0 more to 30 more) and cognitive dysfunction/delirium (RD 33 more per 1000, 95% CI 18 fewer to 84 more), whereas moderate certainty evidence suggests hydroxychloroquine probably increases the risk of diarrhoea (RD 106 more per 1000, 95% CI 48 more to 175 more) and nausea and/or vomiting (RD 62 more per 1000, 95% CI 23 more to 110 more) compared with standard care or placebo. Low certainty evidence suggests lopinavir/ritonavir may increase the risk of diarrhoea (RD 168 more per 1000, 95% CI 58 more to 330 more) and nausea and/or vomiting (RD 160 more per 1000, 95% CI 100 more to 210 more) compared with standard care or placebo. DISCUSSION: Hydroxychloroquine probably increases the risk of diarrhoea and nausea and/or vomiting and may increase the risk of cardiac toxicity and cognitive dysfunction/delirium. Lopinavir/ritonavir may increase the risk of diarrhoea and nausea and/or vomiting. Remdesivir may have no important effect on risk of acute kidney injury or cognitive dysfunction/delirium. These findings provide important information to support the development of evidence-based management strategies for patients with COVID-19.


Subject(s)
Adenosine Monophosphate/adverse effects , Alanine/adverse effects , COVID-19 , Hydroxychloroquine , Lopinavir/adverse effects , Ritonavir/adverse effects , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , Drug Combinations , Humans , Hydroxychloroquine/adverse effects , Randomized Controlled Trials as Topic , SARS-CoV-2
5.
JAMA Intern Med ; 182(4): 376-385, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1707803

ABSTRACT

Importance: Vaccination against SARS-CoV-2 is a highly effective strategy to prevent infection and severe COVID-19 outcomes. The best strategy for a second dose of vaccine among persons who had an immediate allergic reaction to their first SARS CoV-2 vaccination is unclear. Objective: To assess the risk of severe immediate allergic reactions (eg, anaphylaxis) to a second dose of SARS-CoV-2 mRNA vaccine among persons with immediate allergic reactions to their first vaccine dose. Data Sources: MEDLINE, Embase, Web of Science, and the World Health Organization Global Coronavirus database were searched from inception through October 4, 2021. Study Selection: Included studies addressed immediate allergic reactions of any severity to a second SARS-CoV-2 vaccine dose in persons with a known or suspected immediate allergic reaction (<4 hours after vaccination) after their first SARS-CoV-2 vaccine dose. Studies describing a second vaccine dose among persons reporting delayed reactions (>4 hours after vaccination) were excluded. Data Extraction and Synthesis: Paired reviewers independently selected studies, extracted data, and assessed risk of bias. Random-effects models were used for meta-analysis. The GRADE (Grading of Recommendation, Assessment, Development, and Evaluation) approach evaluated certainty of the evidence. Main Outcomes and Measures: Risk of severe immediate allergic reaction and repeated severe immediate allergic reactions with a second vaccine dose. Reaction severity was defined by the reporting investigator, using Brighton Collaboration Criteria, Ring and Messmer criteria, World Allergy Organization criteria, or National Institute of Allergy and Infectious Diseases criteria. Results: Among 22 studies of SARS-CoV-2 mRNA vaccines, 1366 individuals (87.8% women; mean age, 46.1 years) had immediate allergic reactions to their first vaccination. Analysis using the pooled random-effects model found that 6 patients developed severe immediate allergic reactions after their second vaccination (absolute risk, 0.16% [95% CI, 0.01%-2.94%]), 232 developed mild symptoms (13.65% [95% CI, 7.76%-22.9%]), and, conversely, 1360 tolerated the dose (99.84% [95% CI, 97.09%-99.99%]). Among 78 persons with severe immediate allergic reactions to their first SARS-CoV-2 mRNA vaccination, 4 people (4.94% [95% CI, 0.93%-22.28%]) had a second severe immediate reaction, and 15 had nonsevere symptoms (9.54% [95% CI, 2.18%-33.34%]). There were no deaths. Graded vaccine dosing, skin testing, and premedication as risk-stratification strategies did not alter the findings. Certainty of evidence was moderate for those with any allergic reaction to the first dose and low for those with severe allergic reactions to the first dose. Conclusions and Relevance: In this systematic review and meta-analysis of case studies and case reports, the risk of immediate allergic reactions and severe immediate reactions or anaphylaxis associated with a second dose of an SARS-CoV-2 mRNA vaccine was low among persons who experienced an immediate allergic reaction to their first dose. These findings suggest that revaccination of individuals with an immediate allergic reaction to a first SARS-CoV-2 mRNA vaccine dose in a supervised setting equipped to manage severe allergic reactions can be safe.


Subject(s)
Anaphylaxis , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccines, Synthetic
6.
BMJ ; 374: n2231, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1438073

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of antiviral antibody therapies and blood products for the treatment of novel coronavirus disease 2019 (covid-19). DESIGN: Living systematic review and network meta-analysis, with pairwise meta-analysis for outcomes with insufficient data. DATA SOURCES: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, and six Chinese databases (up to 21 July 2021). STUDY SELECTION: Trials randomising people with suspected, probable, or confirmed covid-19 to antiviral antibody therapies, blood products, or standard care or placebo. Paired reviewers determined eligibility of trials independently and in duplicate. METHODS: After duplicate data abstraction, we performed random effects bayesian meta-analysis, including network meta-analysis for outcomes with sufficient data. We assessed risk of bias using a modification of the Cochrane risk of bias 2.0 tool. The certainty of the evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. We meta-analysed interventions with ≥100 patients randomised or ≥20 events per treatment arm. RESULTS: As of 21 July 2021, we identified 47 trials evaluating convalescent plasma (21 trials), intravenous immunoglobulin (IVIg) (5 trials), umbilical cord mesenchymal stem cells (5 trials), bamlanivimab (4 trials), casirivimab-imdevimab (4 trials), bamlanivimab-etesevimab (2 trials), control plasma (2 trials), peripheral blood non-haematopoietic enriched stem cells (2 trials), sotrovimab (1 trial), anti-SARS-CoV-2 IVIg (1 trial), therapeutic plasma exchange (1 trial), XAV-19 polyclonal antibody (1 trial), CT-P59 monoclonal antibody (1 trial) and INM005 polyclonal antibody (1 trial) for the treatment of covid-19. Patients with non-severe disease randomised to antiviral monoclonal antibodies had lower risk of hospitalisation than those who received placebo: casirivimab-imdevimab (odds ratio (OR) 0.29 (95% CI 0.17 to 0.47); risk difference (RD) -4.2%; moderate certainty), bamlanivimab (OR 0.24 (0.06 to 0.86); RD -4.1%; low certainty), bamlanivimab-etesevimab (OR 0.31 (0.11 to 0.81); RD -3.8%; low certainty), and sotrovimab (OR 0.17 (0.04 to 0.57); RD -4.8%; low certainty). They did not have an important impact on any other outcome. There was no notable difference between monoclonal antibodies. No other intervention had any meaningful effect on any outcome in patients with non-severe covid-19. No intervention, including antiviral antibodies, had an important impact on any outcome in patients with severe or critical covid-19, except casirivimab-imdevimab, which may reduce mortality in patients who are seronegative. CONCLUSION: In patients with non-severe covid-19, casirivimab-imdevimab probably reduces hospitalisation; bamlanivimab-etesevimab, bamlanivimab, and sotrovimab may reduce hospitalisation. Convalescent plasma, IVIg, and other antibody and cellular interventions may not confer any meaningful benefit. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol established a priori is included as a data supplement. FUNDING: This study was supported by the Canadian Institutes of Health Research (grant CIHR- IRSC:0579001321). READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Interim updates and additional study data will be posted on our website (www.covid19lnma.com).


Subject(s)
Antibodies, Viral/therapeutic use , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , SARS-CoV-2/immunology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Bayes Theorem , COVID-19/immunology , Clinical Trials as Topic , Humans , Immunization, Passive , Network Meta-Analysis , Treatment Outcome
7.
J Clin Epidemiol ; 141: 161-171, 2022 01.
Article in English | MEDLINE | ID: covidwho-1433469

ABSTRACT

OBJECTIVE: To propose a taxonomy and framework that identifies and presents actionable statements in guidelines. STUDY DESIGN AND SETTING: We took an iterative approach reviewing case studies of guidelines produced by the World Health Organization and the American Society of Hematology to develop an initial conceptual framework. We then tested it using randomly selected recommendations from published guidelines addressing COVID-19 from different organizations, evaluated its results, and refined it before retesting. The urgency and availability of evidence for development of these recommendations varied. We consulted with experts in research methodology and guideline developers to improve the final framework. RESULTS: The resulting taxonomy and framework distinguishes five types of actional statements: formal recommendations; research recommendations; good practice statements; implementation considerations, tools and tips; and informal recommendations. These statements should respond to a priori established criteria and require a clear structure and recognizable presentation in a guideline. Most importantly, this framework identifies informal recommendations that differ from formal recommendations by how they consider evidence and in their development process. CONCLUSION: The identification, standardization and explicit labelling of actionable statements according to the framework may support guideline developers to create actionable statements with clear intent, avoid informal recommendations and improve their understanding and implementation by users.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Publications , Research Design , World Health Organization
8.
Allergy ; 76(8): 2354-2366, 2021 08.
Article in English | MEDLINE | ID: covidwho-1315749

ABSTRACT

BACKGROUND: Although there are many asymptomatic patients, one of the problems of COVID-19 is early recognition of the disease. COVID-19 symptoms are polymorphic and may include upper respiratory symptoms. However, COVID-19 symptoms may be mistaken with the common cold or allergic rhinitis. An ARIA-EAACI study group attempted to differentiate upper respiratory symptoms between the three diseases. METHODS: A modified Delphi process was used. The ARIA members who were seeing COVID-19 patients were asked to fill in a questionnaire on the upper airway symptoms of COVID-19, common cold and allergic rhinitis. RESULTS: Among the 192 ARIA members who were invited to respond to the questionnaire, 89 responded and 87 questionnaires were analysed. The consensus was then reported. A two-way ANOVA revealed significant differences in the symptom intensity between the three diseases (p < .001). CONCLUSIONS: This modified Delphi approach enabled the differentiation of upper respiratory symptoms between COVID-19, the common cold and allergic rhinitis. An electronic algorithm will be devised using the questionnaire.


Subject(s)
Asthma , COVID-19 , Common Cold , Rhinitis, Allergic , Consensus , Humans , Rhinitis, Allergic/diagnosis , SARS-CoV-2
9.
J Allergy Clin Immunol Pract ; 9(10): 3546-3567, 2021 10.
Article in English | MEDLINE | ID: covidwho-1275424

ABSTRACT

Concerns for anaphylaxis may hamper severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization efforts. We convened a multidisciplinary group of international experts in anaphylaxis composed of allergy, infectious disease, emergency medicine, and front-line clinicians to systematically develop recommendations regarding SARS-CoV-2 vaccine immediate allergic reactions. Medline, EMBASE, Web of Science, the World Health Organizstion (WHO) global coronavirus database, and the gray literature (inception, March 19, 2021) were systematically searched. Paired reviewers independently selected studies addressing anaphylaxis after SARS-CoV-2 vaccination, polyethylene glycol (PEG) and polysorbate allergy, and accuracy of allergy testing for SARS-CoV-2 vaccine allergy. Random effects models synthesized the data to inform recommendations based on the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach, agreed upon using a modified Delphi panel. The incidence of SARS-CoV-2 vaccine anaphylaxis is 7.91 cases per million (n = 41,000,000 vaccinations; 95% confidence interval [95% CI] 4.02-15.59; 26 studies, moderate certainty), the incidence of 0.15 cases per million patient-years (95% CI 0.11-0.2), and the sensitivity for PEG skin testing is poor, although specificity is high (15 studies, very low certainty). We recommend vaccination over either no vaccination or performing SARS-CoV-2 vaccine/excipient screening allergy testing for individuals without history of a severe allergic reaction to the SARS-CoV-2 vaccine/excipient, and a shared decision-making paradigm in consultation with an allergy specialist for individuals with a history of a severe allergic reaction to the SARS-CoV-2 vaccine/excipient. We recommend further research to clarify SARS-CoV-2 vaccine/vaccine excipient testing utility in individuals potentially allergic to SARS-CoV2 vaccines or their excipients.


Subject(s)
Anaphylaxis , COVID-19 , Anaphylaxis/diagnosis , Anaphylaxis/epidemiology , COVID-19 Vaccines , Consensus , GRADE Approach , Humans , RNA, Viral , SARS-CoV-2
10.
Allergy ; 76(8): 2354-2366, 2021 08.
Article in English | MEDLINE | ID: covidwho-1228707

ABSTRACT

BACKGROUND: Although there are many asymptomatic patients, one of the problems of COVID-19 is early recognition of the disease. COVID-19 symptoms are polymorphic and may include upper respiratory symptoms. However, COVID-19 symptoms may be mistaken with the common cold or allergic rhinitis. An ARIA-EAACI study group attempted to differentiate upper respiratory symptoms between the three diseases. METHODS: A modified Delphi process was used. The ARIA members who were seeing COVID-19 patients were asked to fill in a questionnaire on the upper airway symptoms of COVID-19, common cold and allergic rhinitis. RESULTS: Among the 192 ARIA members who were invited to respond to the questionnaire, 89 responded and 87 questionnaires were analysed. The consensus was then reported. A two-way ANOVA revealed significant differences in the symptom intensity between the three diseases (p < .001). CONCLUSIONS: This modified Delphi approach enabled the differentiation of upper respiratory symptoms between COVID-19, the common cold and allergic rhinitis. An electronic algorithm will be devised using the questionnaire.


Subject(s)
Asthma , COVID-19 , Common Cold , Rhinitis, Allergic , Consensus , Humans , Rhinitis, Allergic/diagnosis , SARS-CoV-2
11.
BMJ ; 373: n949, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1203960

ABSTRACT

OBJECTIVE: To determine and compare the effects of drug prophylaxis on SARS-CoV-2 infection and covid-19. DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: World Health Organization covid-19 database, a comprehensive multilingual source of global covid-19 literature to 25 March 2021, and six additional Chinese databases to 20 February 2021. STUDY SELECTION: Randomised trials of people at risk of covid-19 who were assigned to receive prophylaxis or no prophylaxis (standard care or placebo). Pairs of reviewers independently screened potentially eligible articles. METHODS: Random effects bayesian network meta-analysis was performed after duplicate data abstraction. Included studies were assessed for risk of bias using a modification of the Cochrane risk of bias 2.0 tool, and certainty of evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. RESULTS: The first iteration of this living network meta-analysis includes nine randomised trials-six of hydroxychloroquine (n=6059 participants), one of ivermectin combined with iota-carrageenan (n=234), and two of ivermectin alone (n=540), all compared with standard care or placebo. Two trials (one of ramipril and one of bromhexine hydrochloride) did not meet the sample size requirements for network meta-analysis. Hydroxychloroquine has trivial to no effect on admission to hospital (risk difference 1 fewer per 1000 participants, 95% credible interval 3 fewer to 4 more; high certainty evidence) or mortality (1 fewer per 1000, 2 fewer to 3 more; high certainty). Hydroxychloroquine probably does not reduce the risk of laboratory confirmed SARS-CoV-2 infection (2 more per 1000, 18 fewer to 28 more; moderate certainty), probably increases adverse effects leading to drug discontinuation (19 more per 1000, 1 fewer to 70 more; moderate certainty), and may have trivial to no effect on suspected, probable, or laboratory confirmed SARS-CoV-2 infection (15 fewer per 1000, 64 fewer to 41 more; low certainty). Owing to serious risk of bias and very serious imprecision, and thus very low certainty of evidence, the effects of ivermectin combined with iota-carrageenan on laboratory confirmed covid-19 (52 fewer per 1000, 58 fewer to 37 fewer), ivermectin alone on laboratory confirmed infection (50 fewer per 1000, 59 fewer to 16 fewer) and suspected, probable, or laboratory confirmed infection (159 fewer per 1000, 165 fewer to 144 fewer) remain very uncertain. CONCLUSIONS: Hydroxychloroquine prophylaxis has trivial to no effect on hospital admission and mortality, probably increases adverse effects, and probably does not reduce the risk of SARS-CoV-2 infection. Because of serious risk of bias and very serious imprecision, it is highly uncertain whether ivermectin combined with iota-carrageenan and ivermectin alone reduce the risk of SARS-CoV-2 infection. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol established a priori is included as a supplement. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 , Carrageenan/pharmacology , Global Health/statistics & numerical data , Hydroxychloroquine/pharmacology , Ivermectin/pharmacology , Anti-Infective Agents/pharmacology , COVID-19/prevention & control , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Humans , SARS-CoV-2 , Treatment Outcome , Uncertainty
12.
Allergy ; 76(10): 2952-2964, 2021 10.
Article in English | MEDLINE | ID: covidwho-1165737

ABSTRACT

Older adults, especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.


Subject(s)
Anaphylaxis , COVID-19 , Aged , Anaphylaxis/etiology , Anaphylaxis/prevention & control , COVID-19 Vaccines , Epinephrine , Humans , Male , SARS-CoV-2
13.
J Clin Epidemiol ; 129: 1-11, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012425

ABSTRACT

OBJECTIVES: The aim of this study is to propose an approach for developing trustworthy recommendations as part of urgent responses (1-2 week) in the clinical, public health, and health systems fields. STUDY DESIGN AND SETTING: We conducted a review of the literature, outlined a draft approach, refined the concept through iterative discussions, a workshop by the Grading of Recommendations Assessment, Development and Evaluation Rapid Guidelines project group, and obtained feedback from the larger Grading of Recommendations Assessment, Development and Evaluation working group. RESULTS: A request for developing recommendations within 2 week is the usual trigger for an urgent response. Although the approach builds on the general principles of trustworthy guideline development, we highlight the following steps: (1) assess the level of urgency; (2) assess feasibility; (3) set up the organizational logistics; (4) specify the question(s); (5) collect the information needed; (6) assess the adequacy of identified information; (7) develop the recommendations using one of the 4 potential approaches: adopt existing recommendations, adapt existing recommendations, develop new recommendations using existing adequate systematic review, or develop new recommendations using expert panel input; and (8) consider an updating plan. CONCLUSION: An urgent response for developing recommendations requires building a cohesive, skilled, and highly motivated multidisciplinary team with the necessary clinical, scientific, and methodological expertise; adapting to shifting needs; complying with the principles of transparency; and properly managing conflicts of interest.


Subject(s)
Information Management , Practice Guidelines as Topic/standards , Consensus , Evidence-Based Medicine/standards , Evidence-Based Medicine/trends , Humans , Information Management/methods , Information Management/organization & administration , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/organization & administration , Systematic Reviews as Topic
14.
Ann Intern Med ; 173(3): 204-216, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-725509

ABSTRACT

BACKGROUND: Mechanical ventilation is used to treat respiratory failure in coronavirus disease 2019 (COVID-19). PURPOSE: To review multiple streams of evidence regarding the benefits and harms of ventilation techniques for coronavirus infections, including that causing COVID-19. DATA SOURCES: 21 standard, World Health Organization-specific and COVID-19-specific databases, without language restrictions, until 1 May 2020. STUDY SELECTION: Studies of any design and language comparing different oxygenation approaches in patients with coronavirus infections, including severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS), or with hypoxemic respiratory failure. Animal, mechanistic, laboratory, and preclinical evidence was gathered regarding aerosol dispersion of coronavirus. Studies evaluating risk for virus transmission to health care workers from aerosol-generating procedures (AGPs) were included. DATA EXTRACTION: Independent and duplicate screening, data abstraction, and risk-of-bias assessment (GRADE for certainty of evidence and AMSTAR 2 for included systematic reviews). DATA SYNTHESIS: 123 studies were eligible (45 on COVID-19, 70 on SARS, 8 on MERS), but only 5 studies (1 on COVID-19, 3 on SARS, 1 on MERS) adjusted for important confounders. A study in hospitalized patients with COVID-19 reported slightly higher mortality with noninvasive ventilation (NIV) than with invasive mechanical ventilation (IMV), but 2 opposing studies, 1 in patients with MERS and 1 in patients with SARS, suggest a reduction in mortality with NIV (very-low-certainty evidence). Two studies in patients with SARS report a reduction in mortality with NIV compared with no mechanical ventilation (low-certainty evidence). Two systematic reviews suggest a large reduction in mortality with NIV compared with conventional oxygen therapy. Other included studies suggest increased odds of transmission from AGPs. LIMITATION: Direct studies in COVID-19 are limited and poorly reported. CONCLUSION: Indirect and low-certainty evidence suggests that use of NIV, similar to IMV, probably reduces mortality but may increase the risk for transmission of COVID-19 to health care workers. PRIMARY FUNDING SOURCE: World Health Organization. (PROSPERO: CRD42020178187).


Subject(s)
Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Aerosols , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Systematic Reviews as Topic , World Health Organization
16.
BMJ ; 370: m2980, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-691120

ABSTRACT

OBJECTIVE: To compare the effects of treatments for coronavirus disease 2019 (covid-19). DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 1 March 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 12 February 2021 were included in the analysis. STUDY SELECTION: Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. METHODS: After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. RESULTS: 196 trials enrolling 76 767 patients were included; 111 (56.6%) trials and 35 098 (45.72%) patients are new from the previous iteration; 113 (57.7%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, corticosteroids probably reduce death (risk difference 20 fewer per 1000 patients, 95% credible interval 36 fewer to 3 fewer, moderate certainty), mechanical ventilation (25 fewer per 1000, 44 fewer to 1 fewer, moderate certainty), and increase the number of days free from mechanical ventilation (2.6 more, 0.3 more to 5.0 more, moderate certainty). Interleukin-6 inhibitors probably reduce mechanical ventilation (30 fewer per 1000, 46 fewer to 10 fewer, moderate certainty) and may reduce length of hospital stay (4.3 days fewer, 8.1 fewer to 0.5 fewer, low certainty), but whether or not they reduce mortality is uncertain (15 fewer per 1000, 30 fewer to 6 more, low certainty). Janus kinase inhibitors may reduce mortality (50 fewer per 1000, 84 fewer to no difference, low certainty), mechanical ventilation (46 fewer per 1000, 74 fewer to 5 fewer, low certainty), and duration of mechanical ventilation (3.8 days fewer, 7.5 fewer to 0.1 fewer, moderate certainty). The impact of remdesivir on mortality and most other outcomes is uncertain. The effects of ivermectin were rated as very low certainty for all critical outcomes, including mortality. In patients with non-severe disease, colchicine may reduce mortality (78 fewer per 1000, 110 fewer to 9 fewer, low certainty) and mechanical ventilation (57 fewer per 1000, 90 fewer to 3 more, low certainty). Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to reduce risk of death or have an effect on any other patient-important outcome. The certainty in effects for all other interventions was low or very low. CONCLUSION: Corticosteroids and interleukin-6 inhibitors probably confer important benefits in patients with severe covid-19. Janus kinase inhibitors appear to have promising benefits, but certainty is low. Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to have any important benefits. Whether or not remdesivir, ivermectin, and other drugs confer any patient-important benefit remains uncertain. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol is publicly available in the supplementary material. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fourth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiration, Artificial/statistics & numerical data , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Centers for Disease Control and Prevention, U.S./statistics & numerical data , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Databases, Factual/statistics & numerical data , Drug Combinations , Evidence-Based Medicine/methods , Evidence-Based Medicine/statistics & numerical data , Glucocorticoids/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Network Meta-Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Ritonavir/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Standard of Care , Treatment Outcome , United States/epidemiology
17.
Lancet ; 395(10242): 1973-1987, 2020 06 27.
Article in English | MEDLINE | ID: covidwho-457495

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. METHODS: We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. FINDINGS: Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] -10·2%, 95% CI -11·5 to -7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; pinteraction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD -14·3%, -15·9 to -10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12-16-layer cotton masks; pinteraction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD -10·6%, 95% CI -12·5 to -7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. INTERPRETATION: The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. FUNDING: World Health Organization.


Subject(s)
Betacoronavirus , COVID-19/prevention & control , Communicable Disease Control , Coronavirus Infections/prevention & control , Eye Protective Devices , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Social Isolation , COVID-19/transmission , Coronavirus Infections/transmission , Humans , Physical Distancing , Pneumonia, Viral/transmission , SARS-CoV-2
18.
BMJ Glob Health ; 5(5)2020 05.
Article in English | MEDLINE | ID: covidwho-262277

ABSTRACT

INTRODUCTION: Proper strategies to minimise the risk of infection in individuals handling the bodies of deceased persons infected with 2019 novel coronavirus (2019-nCoV) are urgently needed. The objective of this study was to systematically review the literature to scope and assess the effects of specific strategies for the management of the bodies. METHODS: We searched five general, three Chinese and four coronavirus disease (COVID-19)-specific electronic databases. We searched registries of clinical trials, websites of governmental and other relevant organisations, reference lists of the included papers and relevant systematic reviews, and Epistemonikos for relevant systematic reviews. We included guidance documents providing practical advice on the handling of bodies of deceased persons with suspected or confirmed COVID-19. Then, we sought primary evidence of any study design reporting on the efficacy and safety of the identified strategies in coronaviruses. We included evidence relevant to contextual factors (ie, acceptability). A single reviewer extracted data using a pilot-tested form and graded the certainty of the evidence using the GRADE approach. A second reviewer verified the data and assessments. RESULTS: We identified one study proposing an uncommon strategy for autopsies for patients with severe acute respiratory syndrome. The study provided very low-certainty evidence that it reduced the risk of transmission. We identified 23 guidance documents providing practical advice on the steps of handling the bodies: preparation, packing, and others and advice related to both the handling of the dead bodies and the use of personal protective equipment by individuals handling them. We did not identify COVID-19 evidence relevant to any of these steps. CONCLUSION: While a substantive number of guidance documents propose specific strategies, we identified no study providing direct evidence for the effects of any of those strategies. While this review highlights major research gaps, it allows interested entities to build their own guidance.


Subject(s)
Cadaver , Coronavirus Infections/mortality , Coronavirus , Pneumonia, Viral/mortality , Practice Guidelines as Topic , COVID-19 , Humans , Mortuary Practice , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL