Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405048

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

2.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1216346

ABSTRACT

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Aged , Amino Acid Motifs , CD4-Positive T-Lymphocytes , Child , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/chemistry , Male , Middle Aged , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
3.
Nat Commun ; 12(1): 2037, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1164849

ABSTRACT

The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Formation/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Middle Aged , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/immunology , Young Adult
4.
Clin Transl Immunology ; 10(3): e1258, 2021.
Article in English | MEDLINE | ID: covidwho-1107626

ABSTRACT

OBJECTIVES: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.

5.
Cell Rep Med ; 2(3): 100208, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1065663

ABSTRACT

SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.


Subject(s)
Antibody Formation , COVID-19/immunology , Adaptive Immunity , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunity, Innate , Interleukin-18/metabolism , Interleukin-6/metabolism , Male , Middle Aged , Receptors, CXCR3/metabolism , Receptors, Interleukin-6/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Th1 Cells/cytology , Th1 Cells/metabolism , Young Adult
6.
EBioMedicine ; 63: 103153, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-956065

ABSTRACT

BACKGROUND: The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS: SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS: We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION: The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING: This work was funded by Ena Respiratory, Melbourne, Australia.


Subject(s)
Lipopeptides/administration & dosage , Respiratory System/virology , SARS-CoV-2/pathogenicity , Toll-Like Receptor 2/agonists , Toll-Like Receptor 6/agonists , Virus Shedding , Administration, Intranasal , Animals , COVID-19/drug therapy , COVID-19/pathology , Disease Models, Animal , Female , Ferrets , Immunity, Innate , Lipopeptides/chemistry , Lipopeptides/pharmacology , Nasal Cavity/pathology , Nasal Cavity/virology , Pharynx/pathology , Pharynx/virology , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Respiratory System/pathology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL