Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-313993


Background: Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods. We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results. ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion. Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.

Lancet Respir Med ; 9(5): 533-544, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537202


Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.

COVID-19/complications , COVID-19/physiopathology , Cough/etiology , Inflammation/etiology , Nervous System Diseases/etiology , Neuroimmunomodulation , Cough/physiopathology , Humans , Inflammation/physiopathology , Nervous System Diseases/physiopathology , SARS-CoV-2 , Syndrome
J Hazard Mater ; 423(Pt B): 127243, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1431979


The significance of this work is that ambient PM2.5 is a direct transmission mode for influenza virus infection to the human alveolar epithelium. The concentration of PM2.5 was 11.7 ± 5.5 µg/m3 in Taipei during 24 December 2019-13 January 2020. Approximately 79% of inhaled PM2.5 is able to reach the upper-to-lower airway, and 47% of PM2.5 is able to reach the alveolar epithelium for influenza virus infection. Influenza A and B viruses were detected in PM2.5 on 9 days, and the influenza A/H5 virus was detected on 15 days during the study period. FL and Pyr were negatively correlated with the influenza A virus. D(ah)P and Acp were positively correlated with the influenza B and A/H5 viruses, respectively. Cd, V, and Zn were positively correlated with the influenza A, B, and A/H5 viruses, respectively. Next, influenza A, B, and A/H5 viral plasmids interacted with carbon black, H2O2, DEPs, and UD. We observed that H2O2 significantly decreased levels of complementary DNA of the three influenza viruses. DEPs and UD significantly decreased influenza A and A/H5 viral levels. In conclusion, chemicals in PM2.5 may play vital roles in terms of viable influenza virus in the atmosphere.

Air Pollutants , Orthomyxoviridae , Air Pollutants/analysis , Humans , Hydrogen Peroxide , Particulate Matter/analysis