Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add filters

Year range
1.
PLoS One ; 17(1): e0262656, 2022.
Article in English | MEDLINE | ID: covidwho-1638777

ABSTRACT

SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.

2.
International Journal of Molecular Sciences ; 23(3):1049, 2022.
Article in English | MDPI | ID: covidwho-1625123

ABSTRACT

SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications—including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)—have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.

3.
Eur J Immunol ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1589126

ABSTRACT

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.

4.
Preprint | EuropePMC | ID: ppcovidwho-297075

ABSTRACT

Due to numerous mutations in the spike protein, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) raises serious concerns since it may significantly limit the antibody-mediated neutralization and increase the risk of reinfections. While a rapid increase in the number of cases is being reported worldwide, until now there has been uncertainty about the efficacy of vaccinations and monoclonal antibodies. Our in vitro findings using authentic SARS-CoV-2 variants indicate that in contrast to the currently circulating Delta variant, the neutralization efficacy of vaccine-elicited sera against Omicron was severely reduced highlighting T-cell mediated immunity as essential barrier to prevent severe COVID-19. Since SARS-CoV-2 Omicron was resistant to casirivimab and imdevimab genotyping of SARS-CoV-2 may be needed before initiating mAb treatment. Variant-specific vaccines and mAb agents may be required to treat Omicron and other emerging variants of concern.

5.
Preprint in English | Other preprints | ID: ppcovidwho-296314

ABSTRACT

The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.5-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which however, might be circumvented by a combination therapy with casirivimab together.

6.
Preprint in English | EuropePMC | ID: ppcovidwho-295758

ABSTRACT

In this position paper, a large group of interdisciplinary experts outlines response strategies against the spread of SARS-CoV-2 in the winter of 2021/2022 in Germany. We review the current state of the COVID-19 pandemic, from incidence and vaccination efficacy to hospital capacity. Building on this situation assessment, we illustrate various possible scenarios for the winter, and detail the mechanisms and effectiveness of the non-pharmaceutical interventions, vaccination, and booster. With this assessment, we want to provide orientation for decision makers about the progress and mitigation of COVID-19.

7.
J Clin Med ; 10(24)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554887

ABSTRACT

Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by RT-PCR is a vital public health tool in the pandemic. Self-collected samples are increasingly used as an alternative to nasopharyngeal swabs. Several studies suggested that they are sufficiently sensitive to be a useful alternative. However, there are limited data directly comparing several different types of self-collected materials to determine which material is preferable. A total of 102 predominantly symptomatic adults with a confirmed SARS-CoV-2 infection self-collected native saliva, a tongue swab, a mid-turbinate nasal swab, saliva obtained by chewing a cotton pad and gargle lavage, within 48 h of initial diagnosis. Sample collection was unsupervised. Both native saliva and gargling with tap water had high diagnostic sensitivity of 92.8% and 89.1%, respectively. Nasal swabs had a sensitivity of 85.1%, which was not significantly inferior to saliva (p = 0.092), but 16.6% of participants reported they had difficult in self-collection of this sample. A tongue swab and saliva obtained by chewing a cotton pad had a significantly lower sensitivity of 74.2% and 70.2%, respectively. Diagnostic sensitivity was not related to the presence of clinical symptoms or to age. When comparing self-collected specimens from different material, saliva, gargle lavage or mid-turbinate nasal swabs may be considered for most symptomatic patients. However, complementary experiments are required to verify that differences in performance observed among the five sampling modes were not attributed to collection impairment.

8.
Clin Infect Dis ; 73(9): e3036-e3041, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501049

ABSTRACT

BACKGROUND: With the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ongoing in Europe in June 2020, day care centers were reopened in the state of Hesse, Germany, after the lockdown. The role young children play in the dynamics of the transmission was unknown. METHODS: We conducted a longitudinal study over 12 weeks and 2 days (18 June 2020-10 September 2020) to screen attendees and staff from day care centers in the state of Hesse, Germany, for both respiratory and gastrointestinal shedding of SARS-CoV-2. A total of 859 children (age range, 3 months-8 years) and 376 staff members from 50 day care centers, which were chosen representatively from throughout the state, participated in the study. Parents were asked to collect both a buccal mucosa and an anal swab from their children once a week. Staff were asked to self-administer the swabs. Reverse transcriptas polymerase chain reaction for SARS-CoV-2 was performed in a multiple-swab pooling protocol. RESULTS: A total of 7366 buccal mucosa swabs and 5907 anal swabs were analyzed. No respiratory or gastrointestinal shedding of SARS-CoV-2 was detected in any of the children. Shedding of SARS-CoV-2 was detected in 2 staff members from distinct day care centers. One was asymptomatic at the time of testing, and one was symptomatic and did not attend the facility on that day. CONCLUSION: Detection of either respiratory or gastrointestinal shedding of SARS-CoV-2 RNA in children and staff members attending day care centers was rare in the context of limited community activity and with infection prevention measures in the facilities in place.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Child, Preschool , Communicable Disease Control , Day Care, Medical , Germany/epidemiology , Humans , Infant , Longitudinal Studies , RNA, Viral
9.
PLoS One ; 16(10): e0258684, 2021.
Article in English | MEDLINE | ID: covidwho-1480452

ABSTRACT

AIMS: Patients with cardiovascular comorbidities have a significantly increased risk for a critical course of COVID-19. As the SARS-CoV2 virus enters cells via the angiotensin-converting enzyme receptor II (ACE2), drugs which interact with the renin angiotensin aldosterone system (RAAS) were suspected to influence disease severity. METHODS AND RESULTS: We analyzed 1946 consecutive patients with cardiovascular comorbidities or hypertension enrolled in one of the largest European COVID-19 registries, the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. Here, we show that angiotensin II receptor blocker intake is associated with decreased mortality in patients with COVID-19 [OR 0.75 (95% CI 0,59-0.96; p = 0.013)]. This effect was mainly driven by patients, who presented in an early phase of COVID-19 at baseline [OR 0,64 (95% CI 0,43-0,96; p = 0.029)]. Kaplan-Meier analysis revealed a significantly lower incidence of death in patients on an angiotensin receptor blocker (ARB) (n = 33/318;10,4%) compared to patients using an angiotensin-converting enzyme inhibitor (ACEi) (n = 60/348;17,2%) or patients who received neither an ACE-inhibitor nor an ARB at baseline in the uncomplicated phase (n = 90/466; 19,3%; p<0.034). Patients taking an ARB were significantly less frequently reaching the mortality predicting threshold for leukocytes (p<0.001), neutrophils (p = 0.002) and the inflammatory markers CRP (p = 0.021), procalcitonin (p = 0.001) and IL-6 (p = 0.049). ACE2 expression levels in human lung samples were not altered in patients taking RAAS modulators. CONCLUSION: These data suggest a beneficial effect of ARBs on disease severity in patients with cardiovascular comorbidities and COVID-19, which is linked to dampened systemic inflammatory activity.


Subject(s)
Angiotensin Receptor Antagonists/administration & dosage , COVID-19 , Hypertension , Registries , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Biomarkers/blood , COVID-19/blood , COVID-19/drug therapy , COVID-19/mortality , Comorbidity , Disease-Free Survival , Female , Humans , Hypertension/blood , Hypertension/drug therapy , Hypertension/mortality , Inflammation/blood , Inflammation/drug therapy , Inflammation/mortality , Male , Middle Aged , Severity of Illness Index , Survival Rate
10.
J Mol Med (Berl) ; 2021 Oct 18.
Article in English | MEDLINE | ID: covidwho-1473984

ABSTRACT

Multiple myeloma patients are often treated with immunomodulatory drugs, proteasome inhibitors, or monoclonal antibodies until disease progression. Continuous therapy in combination with the underlying disease frequently results in severe humoral and cellular immunodeficiency, which often manifests in recurrent infections. Here, we report on the clinical management and immunological data of three multiple-myeloma patients diagnosed with COVID-19. Despite severe hypogammaglobulinemia, deteriorated T cell counts, and neutropenia, the patients were able to combat COVID-19 by balanced response of innate immunity, strong CD8+ and CD4+ T cell activation and differentiation, development of specific T-cell memory subsets, and development of anti-SARS-CoV-2 type IgM and IgG antibodies with virus-neutralizing capacities. Even 12 months after re-introduction of lenalidomide maintenance therapy, antibody levels and virus-neutralizing antibody titers remained detectable, indicating persisting immunity against SARS-CoV-2. We conclude that in MM patients who tested positive for SARS-CoV-2 and were receiving active MM treatment, immune response assessment could be a useful tool to help guide decision-making regarding the continuation of anti-tumor therapy and supportive therapy. KEY MESSAGES: Immunosuppression due to multiple myeloma might not be the crucial factor that is affecting the course of COVID-19. In this case, despite pre-existing severe deficits in CD4+ T-cell counts and IgA und IgM deficiency, we noticed a robust humoral and cellular immune response against SARS-CoV-2. Evaluation of immune response and antibody titers in MM patients that were tested positive for SARS-CoV-2 and are on active MM treatment should be performed on a larger scale; the findings might affect further treatment recommendations for COVID-19, MM treatment re-introduction, and isolation measures.

11.
Metabolites ; 11(10)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1470929

ABSTRACT

SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.

12.
J Infect Dis ; 224(7): 1109-1114, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1470152

ABSTRACT

Whether monoclonal antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralize authentic SARS-CoV-2, including variant B.1.1.7 (alpha), but variants B.1.351 (beta) and P.2 (zeta) were resistant against bamlanivimab and partially resistant to casirivimab. Whether antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantshas been investigated using pseudoviruses. We show that authentic SARS-CoV-2 carrying E484K were resistant against bamlanivimab and less susceptible to casirivimab, convalescent and vaccine-elicited sera.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Mutation, Missense , Neutralization Tests
13.
J Occup Med Toxicol ; 16(1): 43, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1448244

ABSTRACT

BACKGROUND: Due to the coronavirus disease 2019 (COVID-19) pandemic, interventions in the upper airways are considered high-risk procedures for otolaryngologists and their colleagues. The purpose of this study was to evaluate limitations in hearing and communication when using a powered air-purifying respirator (PAPR) system to protect against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) transmission and to assess the benefit of a headset. METHODS: Acoustic properties of the PAPR system were measured using a head and torso simulator. Audiological tests (tone audiometry, Freiburg speech test, Oldenburg sentence test (OLSA)) were performed in normal-hearing subjects (n = 10) to assess hearing with PAPR. The audiological test setup also included simulation of conditions in which the target speaker used either a PAPR, a filtering face piece (FFP) 3 respirator, or a surgical face mask. RESULTS: Audiological measurements revealed that sound insulation by the PAPR headtop and noise, generated by the blower-assisted respiratory protection system, resulted in significantly deteriorated hearing thresholds (4.0 ± 7.2 dB hearing level (HL) vs. 49.2 ± 11.0 dB HL, p < 0.001) and speech recognition scores in quiet (100.0 ± 0.0% vs. 2.5 ± 4.2%, p < 0.001; OLSA: 20.8 ± 1.8 dB vs. 61.0 ± 3.3 dB SPL, p < 0.001) when compared to hearing without PAPR. Hearing with PAPR was significantly improved when the subjects were equipped with an in-ear headset (p < 0.001). Sound attenuation by FFP3 respirators and surgical face masks had no clinically relevant impact on speech perception. CONCLUSIONS: The PAPR system evaluated here can be considered for high-risk procedures in SARS-CoV-2-positive patients, provided that hearing and communication of the surgical team are optimized by the additional use of a headset.

14.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438531

ABSTRACT

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Subject(s)
Antigens, Differentiation/metabolism , CD47 Antigen/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Pandemics , Receptors, Immunologic/metabolism , SARS-CoV-2/metabolism , Severity of Illness Index , Signal Transduction/immunology , Blood Donors , Blotting, Western/methods , Bronchi/cytology , COVID-19/pathology , COVID-19/virology , Caco-2 Cells , Epithelial Cells/metabolism , Epithelial Cells/virology , Healthy Volunteers , Humans , Monocytes/metabolism , Monocytes/virology , Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
15.
Acta Paediatr ; 110(12): 3315-3321, 2021 12.
Article in English | MEDLINE | ID: covidwho-1408239

ABSTRACT

AIM: It can be challenging to distinguish COVID-19 in children from other common infections. We set out to determine the rate at which children consulting a primary care paediatrician with an acute infection are infected with SARS-CoV-2 and to compare distinct findings. METHOD: In seven out-patient clinics, children aged 0-13 years with any new respiratory or gastrointestinal symptoms and presumed infection were invited to be tested for SARS-CoV-2. Factors that were correlated with testing positive were determined. Samples were collected from 25 January 2021 to 01 April 2021. RESULTS: Seven hundred and eighty-three children participated in the study (median age 3 years and 0 months, range 1 month to 12 years and 11 months). Three hundred and fifty-eight were female (45.7%). SARS-CoV-2 RNA was detected in 19 (2.4%). The most common symptoms in children with as well as without detectable SARS-CoV-2 RNA were rhinitis, fever and cough. Known recent exposure to a case of COVID-19 was significantly correlated with testing positive, but symptoms or clinical findings were not. CONCLUSION: COVID-19 among the children with symptoms of an acute infection was uncommon, and the clinical presentation did not differ significantly between children with and without evidence of an infection with SARS-CoV-2.


Subject(s)
COVID-19 , Child , Female , Fever , Humans , Infant , Primary Health Care , RNA, Viral , SARS-CoV-2
16.
Life (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1399330

ABSTRACT

Blood-pressure-lowering drugs are proposed to foster SARS-CoV-2 infection by pharmacological upregulation of angiotensin-converting enzyme 2 (ACE2), the binding partner of the virus spike (S) protein, located on the surface of the host cells. Conversely, it is postulated that angiotensin-renin system antagonists may prevent lung damage caused by SARS-CoV-2 infection, by reducing angiotensin II levels, which can induce permeability of lung endothelial barrier via its interaction with the AT1 receptor (AT1R). METHODS: We have investigated the influence of the ACE inhibitors (lisinopril, captopril) and the AT1 antagonists (telmisartan, olmesartan) on the level of ACE2 mRNA and protein expression as well as their influence on the cytopathic effect of SARS-CoV-2 and on the cell barrier integrity in a Caco-2 cell model. RESULTS: The drugs revealed no effect on ACE2 mRNA and protein expression. ACE inhibitors and AT1R antagonist olmesartan did not influence the infection rate of SARS-CoV-2 and were unable to prevent the SARS-CoV-2-induced cell barrier disturbance. A concentration of 25 µg/mL telmisartan significantly reduced the virus replication rate. CONCLUSION: ACE inhibitors and AT1R antagonist showed neither beneficial nor detrimental effects on SARS-CoV-2-infection and cell barrier integrity in vitro at pharmacologically relevant concentrations.

18.
Vaccine ; 39(30): 4025-4026, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1386704

Subject(s)
COVID-19 , Humans , SARS-CoV-2
19.
Transfusion ; 60(10): 2441-2447, 2020 10.
Article in English | MEDLINE | ID: covidwho-1388415

ABSTRACT

BACKGROUND: In the pandemic, testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time polymerase chain reaction is one of the pillars on which countermeasures are based. Factors limiting the output of laboratories interfere with the effectiveness of public health measures. Conserving reagents by pooling samples in low-probability settings is proposed but may cause dilution and loss of sensitivity. Blood transfusion services had experience in performance of high throughput nucleic acid testing (NAT) analysis and can support the national health system by screening of the inhabitants for SARS-COV-2. METHODS: We evaluated a new approach of a multiple-swab method by simultaneously incubating multiple respiratory swabs in a single tube. Analytical sensitivity was constant up to a total number of 50 swabs. It was consequently applied in the testing of 50 symptomatic patients (5-sample pools) as well as 100 asymptomatic residents of a nursing home (10-sample pools). RESULTS: The novel method did not cause false-negative results with nonsignificantly differing cycle threshold values between single-swab and multiple-swab NAT. In two routine applications, all minipools containing positive patient samples were correctly identified. CONCLUSIONS: The new method enables countries to increase the total number of testing significantly. The multiple-swab method is able to screen system relevant groups of employees frequently. The example in Germany shows that blood transfusion services can support general health systems with their experience in NAT and their high-throughput instruments. Screening of a huge number of inhabitants is currently the only option to prevent a second infection wave and enable exit strategies in many countries.


Subject(s)
SARS-CoV-2/pathogenicity , COVID-19/virology , Germany , Humans , Nucleic Acid Amplification Techniques/methods , Specimen Handling/methods
20.
Transfusion ; 60(6): 1119-1122, 2020 06.
Article in English | MEDLINE | ID: covidwho-1388414

ABSTRACT

Oral swabs, sputum, and blood samples from 18 asymptomatic and symptomatic patients with SARS-CoV-2 infection were examined using RT-PCR testing in order to assess the risk of transfusion-related transmission. In asymptomatic patients as well as patients with flu-like symptoms and fever, no SARS-CoV-2 RNA could be detected in the blood or serum despite a clearly positive result in all throat swabs. As patients with symptoms of infectious disease will not be admitted to blood donation, the risk for transfusion transmission of SARS-CoV-2 seems to be negligible.


Subject(s)
Asymptomatic Infections , Betacoronavirus/isolation & purification , Blood Donors , Blood Safety , Coronavirus Infections/transmission , Donor Selection , Pneumonia, Viral/transmission , Transfusion Reaction/prevention & control , Adolescent , Adult , Aged , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Female , Germany , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Transfusion Reaction/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...