Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1712991

ABSTRACT

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Subject(s)
Blood-Brain Barrier/virology , Central Nervous System/virology , SARS-CoV-2/physiology , Virus Internalization , Antibodies/pharmacology , Benzamidines/pharmacology , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Guanidines/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Virus Internalization/drug effects
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-309977

ABSTRACT

To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314512

ABSTRACT

Neurological complications are common in COVID-19 patients. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in patients’ brain tissues, its entry routes and resulting consequences are not well understood. Here, we report that the blood-brain barrier (BBB) and its microenvironment show pronounced upregulation of interferon signaling pathways in fatal COVID-19. Moreover, human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) were susceptible to SARS-CoV-2 infection and recapitulated the transcriptional changes detected in vivo . While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active transcytosis of the virus across the BBB in vitro . SARS-CoV-2 entry into BCECs could be reduced by anti-spike-, anti-ACE2- and anti-NRP1-specific antibodies or the TMPRSS2 inhibitor nafamostat. Together, our data provide direct evidence for SARS-CoV-2 brain entry across the BBB resulting in an increase in interferon signaling.

4.
Patterns (N Y) ; 3(4): 100453, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1670996

ABSTRACT

One of the impacts of the coronavirus disease 2019 (COVID-19) pandemic has been a push for researchers to better exploit synthetic data and accelerate the design, analysis, and modeling of clinical trials. The unprecedented clinical efforts caused by COVID-19's emergence will certainly boost future robust and innovative approaches of statistical sciences applied to clinical fields. Here, we report the development of SASC, a simple but efficient approach to generate COVID-19-related synthetic clinical data through a web application. SASC takes basic summary statistics for each group of patients and attempts to generate single variables according to internal correlations. To assess the "reliability" of the results, statistical comparisons with Synthea, a known synthetic patient generator tool, and, more importantly, with clinical data of real COVID-19 patients are provided. The source code and web application are available on GitHub, Zenodo, and Mendeley Data.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292939

ABSTRACT

The COVID-19 data catalogue is a repository that provides a landscape view of COVID-19 studies and datasets as a putative source to enable researchers to develop personalized COVID-19 predictive risk models. The COVID-19 data catalogue currently contains over 400 studies and their relevant information collected from a wide range of global sources such as global initiatives, clinical trial repositories, publications and data repositories. Further, the curated content stored in this data catalogue is complemented by a web application, providing visualizations of these studies, including their references, relevant information such as measured variables, and the geographical locations of where these studies were performed. This resource is one of the first to capture, organize and store studies, datasets and metadata in the area of COVID-19 in a comprehensive repository. We are convinced that our work will facilitate future research and development of personalized predictive risk models of COVID-19.

6.
J Alzheimers Dis ; 83(4): 1563-1601, 2021.
Article in English | MEDLINE | ID: covidwho-1468319

ABSTRACT

Neurological disorders significantly impact the world's economy due to their often chronic and life-threatening nature afflicting individuals which, in turn, creates a global disease burden. The Group of Twenty (G20) member nations, which represent the largest economies globally, should come together to formulate a plan on how to overcome this burden. The Neuroscience-20 (N20) initiative of the Society for Brain Mapping and Therapeutics (SBMT) is at the vanguard of this global collaboration to comprehensively raise awareness about brain, spine, and mental disorders worldwide. This paper aims to provide a comprehensive review of the various brain initiatives worldwide and highlight the need for cooperation and recommend ways to bring down costs associated with the discovery and treatment of neurological disorders. Our systematic search revealed that the cost of neurological and psychiatric disorders to the world economy by 2030 is roughly $16T. The cost to the economy of the United States is $1.5T annually and growing given the impact of COVID-19. We also discovered there is a shortfall of effective collaboration between nations and a lack of resources in developing countries. Current statistical analyses on the cost of neurological disorders to the world economy strongly suggest that there is a great need for investment in neurotechnology and innovation or fast-tracking therapeutics and diagnostics to curb these costs. During the current COVID-19 pandemic, SBMT, through this paper, intends to showcase the importance of worldwide collaborations to reduce the population's economic and health burden, specifically regarding neurological/brain, spine, and mental disorders.


Subject(s)
Global Burden of Disease , International Cooperation , Mental Disorders , Nervous System Diseases , COVID-19/epidemiology , Global Burden of Disease/organization & administration , Global Burden of Disease/trends , Global Health/economics , Global Health/trends , Humans , Mental Disorders/economics , Mental Disorders/epidemiology , Mental Disorders/therapy , Nervous System Diseases/economics , Nervous System Diseases/epidemiology , Nervous System Diseases/therapy , Neurosciences/methods , Neurosciences/trends , SARS-CoV-2
7.
ACS Pharmacol Transl Sci ; 4(3): 1096-1110, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1313542

ABSTRACT

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 µM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.

8.
Sci Rep ; 11(1): 11049, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1246386

ABSTRACT

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific community's massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made. In this paper, we present the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a compilation of 10 separate disease maps and sources of experimental data focused on SARS-CoV-2/COVID-19 pathophysiology. By applying our systematic approach, we were able to predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results demonstrate that our graph can be used to not only explore the involved mechanistic pathways, but also to identify novel combinations of drug repurposing candidates.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Repositioning/methods , SARS-CoV-2/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Combined Modality Therapy , Computational Biology , Drug Synergism , Drug Therapy, Combination , GTP Phosphohydrolases/therapeutic use , Humans , Knowledge Bases , Nelfinavir/therapeutic use , Pandemics , Raloxifene Hydrochloride/therapeutic use
9.
Stem Cells ; 39(7): 904-912, 2021 07.
Article in English | MEDLINE | ID: covidwho-1126519

ABSTRACT

We have shown previously that transplanted bone marrow mononuclear cells (BM-MNC), which are a cell fraction rich in hematopoietic stem cells, can activate cerebral endothelial cells via gap junction-mediated cell-cell interaction. In the present study, we investigated such cell-cell interaction between mesenchymal stem cells (MSC) and cerebral endothelial cells. In contrast to BM-MNC, for MSC we observed suppression of vascular endothelial growth factor uptake into endothelial cells and transfer of glucose from endothelial cells to MSC in vitro. The transfer of such a small molecule from MSC to vascular endothelium was subsequently confirmed in vivo and was followed by suppressed activation of macrophage/microglia in stroke mice. The suppressive effect was absent by blockade of gap junction at MSC. Furthermore, gap junction-mediated cell-cell interaction was observed between circulating white blood cells and MSC. Our findings indicate that gap junction-mediated cell-cell interaction is one of the major pathways for MSC-mediated suppression of inflammation in the brain following stroke and provides a novel strategy to maintain the blood-brain barrier in injured brain. Furthermore, our current results have the potential to provide a novel insight for other ongoing clinical trials that make use of MSC transplantation aiming to suppress excess inflammation, as well as other diseases such as COVID-19 (coronavirus disease 2019).


Subject(s)
Cell Communication , Gap Junctions , Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Allografts , Animals , COVID-19/metabolism , COVID-19/pathology , Gap Junctions/metabolism , Gap Junctions/pathology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , SARS-CoV-2/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy
10.
Sci Data ; 8(1): 70, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1104525

ABSTRACT

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning , SARS-CoV-2/drug effects , Benzamidines , COVID-19 , Caco-2 Cells , Cetylpyridinium , Drug Evaluation, Preclinical , Esters , Guanidines , Humans , Lopinavir , Mefloquine , Papaverine
SELECTION OF CITATIONS
SEARCH DETAIL