Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Science (New York, N.Y.) ; 2022.
Article in English | EuropePMC | ID: covidwho-1939926

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded, rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicrons and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. Description

3.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1406083

ABSTRACT

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Subject(s)
Azides/chemistry , COVID-19 Vaccines/chemistry , Gluconates/chemistry , Glycine/chemistry , Histidine/chemistry , Lactones/chemistry , Vaccines, Virus-Like Particle/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Azides/immunology , COVID-19 Vaccines/immunology , Gluconates/immunology , Glycine/immunology , Histidine/immunology , Humans , Lactones/immunology , Models, Molecular , Molecular Structure , Vaccines, Virus-Like Particle/immunology
4.
Cell Rep ; 36(13): 109760, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1401299

ABSTRACT

Many anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) neutralizing antibodies target the angiotensin-converting enzyme 2 (ACE2) binding site on viral spike receptor-binding domains (RBDs). Potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly emergent zoonotic sarbecoviruses and variants, but they usually show only weak neutralization potencies. Here, we characterize two class 4 anti-RBD antibodies derived from coronavirus disease 2019 (COVID-19) donors that exhibit breadth and potent neutralization of zoonotic coronaviruses and SARS-CoV-2 variants. C118-RBD and C022-RBD structures reveal orientations that extend from the cryptic epitope to occlude ACE2 binding and CDRH3-RBD main-chain H-bond interactions that extend an RBD ß sheet, thus reducing sensitivity to RBD side-chain changes. A C118-spike trimer structure reveals rotated RBDs that allow access to the cryptic epitope and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/immunology , Broadly Neutralizing Antibodies/pharmacology , Cross Reactions , Epitopes/metabolism , Humans , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1201121

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Science ; 371(6530): 735-741, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1066809

ABSTRACT

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles with four to eight distinct RBDs). Mice immunized with RBD nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic RBD nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs relative to sera from immunizations with homotypic SARS-CoV-2-RBD nanoparticles or COVID-19 convalescent human plasmas. Moreover, after priming, sera from mosaic RBD-immunized mice neutralized heterologous pseudotyped coronaviruses as well as or better than sera from homotypic SARS-CoV-2-RBD nanoparticle immunizations, demonstrating no loss of immunogenicity against particular RBDs resulting from co-display. A single immunization with mosaic RBD nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 Vaccines/immunology , Nanoparticles , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Infections/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Immune Sera/immunology , Immunization , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Domains , Receptors, Antigen, B-Cell/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Zoonoses/immunology , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL