Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
JAMA Intern Med ; 2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1919150

ABSTRACT

Importance: The benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated. Objectives: To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNo2) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (o2SC). Design, Setting, and Participants: This multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021. Interventions: Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to o2SC, CPAP, or HFNo2. Main Outcomes and Measures: The main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). Results: Among 841 screened patients, 546 patients (median [IQR] age, 67.4 [59.3-73.1] years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among o2SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNo2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among o2 support groups (o2SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; o2SC vs HFNo2: HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (o2SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; o2SC vs HFNo2: HR, 0.89 [95% CI, 0.53-1.47]). Interactions between interventions were not significant. Conclusions and Relevance: In this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of IMV requirement. Trial Registration: ClinicalTrials.gov Identifier: NCT04344730; EudraCT: 2020-001457-43.

2.
Vieillard-Baron, Antoine, Flicoteaux, Rémi, Salmona, Maud, Annane, Djillali, Ayed, Soufia, Azoulay, Elie, Bellaiche, Raphael, Beloucif, Sadek, Berti, Enora, Bertier, Astrid, Besset, Sébastien, Bret, Marlène, Cariou, Alain, Carpentier, Christophe, Chaouch, Oussama, Chariot, Appoline, Charron, Cyril, Charpentier, Julien, Cheurfa, Cherifa, Cholley, Bernard, Clerc, Sébastien, Combes, Alain, Chousterman, Benjamin, Cohen, Yves, Constantin, Jean-Michel, Damoisel, Charles, Darmon, Michael, Degos, Vincent, D’Ableiges, Bertrand De Maupeou, Demeret, Sophie, Montmollin, Etienne De, Demoule, Alexandre, Depret, Francois, Diehl, Jean-Luc, Djibré, Michel, Do, Chung-Hi, Dudoignon, Emmanuel, Duranteau, Jacques, Fartoukh, Muriel, Fieux, Fabienne, Gayat, Etienne, Gennequin, Mael, Guidet, Bertrand, Gutton, Christophe, Hamada, Sophie, Heming, Nicholas, Jouffroy, Romain, Keita-Meyer, Hawa, Langeron, Olivier, Lortat-Jacob, Brice, Marey, Jonathan, Mebazaa, Alexandre, Megarbane, Bruno, Mekontso-Dessap, Armand, Mira, Jean-Paul, Molle, Julie, Mongardon, Nicolas, Montravers, Philippe, Morelot-Panzini, Capucine, Nemlaghi, Safaa, Nguyen, Bao-long, Parrot, Antoine, Pasqualotto, Romain, Peron, Nicolas, Picard, Lucile, de Chambrun, Marc Pineton, Planquette, Benjamin, Plaud, Benoit, Pons, Stéphanie, Quesnel, Christophe, Raphalen, Jean-Herlé, Razazi, Keyvan, Ricard, Jean-Damien, Roche, Anne, Rohaut, Benjamin, Roux, Damien, Savale, Laurent, Sobotka, Jennifer, Teboul, Jean-Louis, Timsit, Jean-François, Voiriot, Guillaume, Weiss, Emmanuel, Wildenberg, Lucille, Zogheib, Elie, Riou, Bruno, Batteux, Frédéric.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327150

ABSTRACT

Importance Information about the severity of Omicron is scarce. Objective To report the respective risk of ICU admission in patients hospitalized with Delta and Omicron variants and to compare the characteristics and disease severity of critically ill patients infected with both variants according to vaccination status. Design Analysis from the APHP database, called Reality, prospectively recording the following information in consecutive patients admitted in the ICU for COVID-19: age, sex, immunosuppression, vaccination, pneumonia, need for invasive mechanical ventilation, time between symptom onset and ICU admission, and in-ICU mortality. Retrospective analysis on an administrative database, “Système d’Information pour le Suivi des Victimes” (SI-VIC), which lists hospitalized COVID-19 patients. Setting 39 hospitals in the Paris area from APHP group. Participants Patients hospitalized from December 1, 2021 to January 18, 2022 for COVID-19. Main outcomes and measures Risk of ICU admission was evaluated in 3761 patients and Omicron cases were compared to Delta cases in the ICU in 888 consecutive patients. Results On January 18, 45% of patients in the ICU and 63.8% of patients in conventional hospital units were infected with the Omicron variant (p < 0.001). The risk of ICU admission with Omicron was reduced by 64% than with Delta (9.3% versus 25.8% of cases, respectively, p < 0.001). In critically ill patients, 400 had the Delta variant, 229 the Omicron variant, 98 had an uninformative variant screening test and 161 did not have information on variant screening test. 747 patients (84.1%) were admitted for pneumonia. Compared to patients infected with Delta, Omicron patients were more vaccinated (p<0.001), even with 3 doses, more immunocompromised (p<0.001), less admitted for pneumonia (p<0.001), especially when vaccinated (62.1% in vaccinated versus 80.7% in unvaccinated, p<0.001), and less invasively ventilated (p=0.02). Similar results were found in the subgroup of pneumonia but Omicron cases were older. Unadjusted in-ICU mortality did not differ between Omicron and Delta cases, neither in the overall population (20.0% versus 27.9%, p = 0.08), nor in patients with pneumonia (31.6% versus 29.7%, respectively) where adjusted in-ICU mortality did not differ according to the variant (HR 1.43 95%CI [0.89;2.29], p=0.14). Conclusion and relevance Compared to the Delta variant, the Omicron variant is less likely to result in ICU admission and less likely to be associated with pneumonia. However, when patients with the Omicron variant are admitted for pneumonia, the severity seems similar to that of patients with the Delta variant, with more immunocompromised and vaccinated patients and no difference in adjusted in-ICU mortality. Further studies are needed to confirm our results.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307128

ABSTRACT

Background: The efficacy of high flow nasal canula oxygen therapy (HFNO) to prevent invasive mechanical ventilation (IMV) is not well established in severe coronavirus disease 2019 (COVID-19). The aim of this study was to compare the risk of intubation between two strategies of oxygenation (conventional oxygenation and HFNO) in critically ill COVID 19 patientsMethods: This was a multicenter retrospective case series witch took place in two intensive care units (ICU) of tertiary hospitals in the Paris region from March 11, to May 3, 2020. We enrolled consecutive patients hospitalized for COVID-19 and acute respiratory failure (ARF) who did not receive IMV at ICU admission. The primary outcome was the rate of IMV after ICU admission. Secondary outcomes were death at day 28 and day 60, length of ICU stay, ventilator-free days and number of patients with ventilator-free days >14 days. Data from the HFNO group were compared with those from the standard oxygen therapy (SOT) group.ResultsAmong 138 patients who met the inclusion criteria, 62 (45%) were treated with SOT alone, and 76 (55%) with HFNO. In HFNO group, 39/76 (51%) patients were intubated and 46/62 (74%) in SOT group. After using a standard logistic regression on the original sample, HFNO was associated with significantly lower rate IMV (OR [IC-95%] 0.37 [0.18 – 0.76] p = 0.007). After propensity score application, HFNO was still associated with a lower rate of intubation (OR [IC-95%] 0.31 [0.14-0.66] p = 0.002). Length of ICU stay and mortality at day 28 and day 60 did not significantly differ between HFNO and SOT groups after propensity score application. In a univariate analysis, ventilator-free days at days 28 was higher in HNFO group (21 days vs 10 days, p=0.005). The number of patients with ventilator free-days >14 days was higher in HFNO group after propensity score application (66% vs 39%;OR 3.91[1.91-7.99], p=0.0002).ConclusionsHigh flow nasal canula oxygen for ARF due to COVID-19 reduces the need for intubation.

4.
Lancet Respir Med ; 10(2): 180-190, 2022 02.
Article in English | MEDLINE | ID: covidwho-1537209

ABSTRACT

BACKGROUND: Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care. METHODS: We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221. FINDINGS: Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39-3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12-6·56], p=0·027), and long duration of mechanical ventilation (>14 days; OR 2·16 [1·14-4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (<1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26-2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53-3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03-2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0-72·8) versus 32·1% (27·7-36·7; p<0·0001). INTERPRETATION: This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. FUNDING: Pfizer.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Adolescent , Adult , Child, Preschool , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
5.
Infect Dis (Lond) ; 53(10): 779-788, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1240868

ABSTRACT

BACKGROUND: Reduced mortality at 28 days in patients treated with corticosteroids was demonstrated, but this result was not confirmed by certain large epidemiological studies. Our aim was to determine whether corticosteroids improve the outcomes of our patients hospitalized with COVID-19 pneumonia. METHODS: Our retrospective, single centre cohort study included consecutive patients hospitalized for moderate to severe COVID-19 pneumonia between March 15 and April 15 2020. An early short course of corticosteroids was given during the second phase of the study. The primary composite endpoint was the need for mechanical ventilation or mortality within 28 days of admission. A multivariate logistic regression model was used to estimate the propensity score, i.e. the probability of each patient receiving corticosteroid therapy based on the initial variables. RESULTS: About 120 consecutive patients were included, 39 in the "corticosteroids group", 81 in the "no corticosteroids group"; their mean ages (±SD) were 66.4 ± 14.1 and 66.1 ± 15.2 years, respectively. Mechanical ventilation-free survival at 28 days was higher in the "corticosteroids group" than in the "no corticosteroids group" (71% and 29% of cases, respectively, p < .0001). The effect of corticosteroids was confirmed with HR .28 (95%CI .10-.79), p = .02. In older and comorbid patients who were not eligible for intensive care, the effect of corticosteroid therapy was also beneficial (HR .36 (95%CI .16-.80), p = .01). CONCLUSION: A short course of corticosteroids reduced the risks of death or mechanical ventilation in patients with moderate to severe COVID-19 pneumonia in all patients and also in older and comorbid patients not eligible for intensive care.


Subject(s)
COVID-19 , Respiration, Artificial , Adrenal Cortex Hormones/therapeutic use , Aged , Aged, 80 and over , Cohort Studies , Humans , Middle Aged , Retrospective Studies , SARS-CoV-2
7.
Ann Intensive Care ; 11(1): 37, 2021 Feb 27.
Article in English | MEDLINE | ID: covidwho-1105741

ABSTRACT

BACKGROUND: The efficacy of high flow nasal canula oxygen therapy (HFNO) to prevent invasive mechanical ventilation (IMV) is not well established in severe coronavirus disease 2019 (COVID-19). The aim of this study was to compare the risk of IMV between two strategies of oxygenation (conventional oxygenation and HFNO) in critically ill COVID 19 patients. METHODS: This was a bicenter retrospective study which took place in two intensive care units (ICU) of tertiary hospitals in the Paris region from March 11, to May 3, 2020. We enrolled consecutive patients hospitalized for COVID-19 and acute respiratory failure (ARF) who did not receive IMV at ICU admission. The primary outcome was the rate of IMV after ICU admission. Secondary outcomes were death at day 28 and day 60, length of ICU stay and ventilator-free days at day 28. Data from the HFNO group were compared with those from the standard oxygen therapy (SOT) group using weighted propensity score. RESULTS: Among 138 patients who met the inclusion criteria, 62 (45%) were treated with SOT alone, and 76 (55%) with HFNO. In HFNO group, 39/76 (51%) patients received IMV and 46/62 (74%) in SOT group (OR 0.37 [95% CI, 0.18-0.76] p = 0.007). After weighted propensity score, HFNO was still associated with a lower rate of IMV (OR 0.31 [95% CI, 0.14-0.66] p = 0.002). Length of ICU stay and mortality at day 28 and day 60 did not significantly differ between HFNO and SOT groups after weighted propensity score. Ventilator-free days at days 28 was higher in HNFO group (21 days vs 10 days, p = 0.005). In the HFNO group, predictive factors associated with IMV were SAPS2 score (OR 1.13 [95%CI, 1.06-1.20] p = 0.0002) and ROX index > 4.88 (OR 0.23 [95%CI, 0.008-0.64] p = 0.006). CONCLUSIONS: High flow nasal canula oxygen for ARF due to COVID-19 is associated with a lower rate of invasive mechanical ventilation.

8.
J Clin Med ; 10(3)2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1060442

ABSTRACT

The mortality of COVID-19 patients in the intensive care unit (ICU) is influenced by their state at admission. We aimed to model COVID-19 acute respiratory distress syndrome state transitions from ICU admission to day 60 outcome and to evaluate possible prognostic factors. We analyzed a prospective French database that includes critically ill COVID-19 patients. A six-state multistate model was built and 17 transitions were analyzed either using a non-parametric approach or a Cox proportional hazard model. Corticosteroids and IL-antagonists (tocilizumab and anakinra) effects were evaluated using G-computation. We included 382 patients in the analysis: 243 patients were admitted to the ICU with non-invasive ventilation, 116 with invasive mechanical ventilation, and 23 with extracorporeal membrane oxygenation. The predicted 60-day mortality was 25.9% (95% CI: 21.8%-30.0%), 44.7% (95% CI: 48.8%-50.6%), and 59.2% (95% CI: 49.4%-69.0%) for a patient admitted in these three states, respectively. Corticosteroids decreased the risk of being invasively ventilated (hazard ratio (HR) 0.59, 95% CI: 0.39-0.90) and IL-antagonists increased the probability of being successfully extubated (HR 1.8, 95% CI: 1.02-3.17). Antiviral drugs did not impact any transition. In conclusion, we observed that the day-60 outcome in COVID-19 patients is highly dependent on the first ventilation state upon ICU admission. Moreover, we illustrated that corticosteroid and IL-antagonists may influence the intubation duration.

9.
Intensive Care Med ; 47(2): 180-187, 2021 02.
Article in English | MEDLINE | ID: covidwho-1051347

ABSTRACT

PURPOSE: The primary objective of this study was to investigate the risk of ICU bloodstream infection (BSI) in critically ill COVID-19 patients compared to non-COVID-19 patients. Subsequently, we performed secondary analyses in order to explain the observed results. METHODS: We conducted a matched case-cohort study, based on prospectively collected data from a large ICU cohort in France. Critically ill COVID-19 patients were matched with similar non-COVID-19 patients. ICU-BSI was defined by an infection onset occurring > 48 h after ICU admission. We estimated the effect of COVID-19 on the probability to develop an ICU-BSI using proportional subdistribution hazards models. RESULTS: We identified 321 COVID-19 patients and 1029 eligible controls in 6 ICUs. Finally, 235 COVID-19 patients were matched with 235 non-COVID-19 patients. We observed 43 ICU-BSIs, 35 (14.9%) in the COVID-19 group and 8 (3.4%) in the non-COVID-19 group (p ≤ 0.0001), respectively. ICU-BSIs of COVID-19 patients were more frequently of unknown source (47.4%). COVID-19 patients had an increased probability to develop ICU-BSI, especially after 7 days of ICU admission. Using proportional subdistribution hazards models, COVID-19 increased the daily risk to develop ICU-BSI (sHR 4.50, 95% CI 1.82-11.16, p = 0.0012). Among COVID-19 patients (n = 235), a significantly increased risk for ICU-BSI was detected in patients who received tocilizumab or anakinra (sHR 3.20, 95% CI 1.31-7.81, p = 0.011) but not corticosteroids. CONCLUSIONS: Using prospectively collected multicentric data, we showed that the ICU-BSI risk was higher for COVID-19 than non-COVID-19 critically ill patients after seven days of ICU stay. Clinicians should be particularly careful on late ICU-BSIs in COVID-19 patients. Tocilizumab or anakinra may increase the ICU-BSI risk.


Subject(s)
COVID-19/complications , Cross Infection , Sepsis/epidemiology , Aged , Cohort Studies , Cross Infection/epidemiology , Female , France/epidemiology , Humans , Intensive Care Units , Male , Middle Aged , Proportional Hazards Models , Risk Factors
11.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: covidwho-951705

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak is a primary global concern, and data are lacking concerning risk of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination. OBJECTIVE: To identify risk factors for SARS-CoV-2 environmental contamination in COVID-19 patients admitted to the intensive care unit (ICU). METHODS: A prospective single centre 1-day study was carried out in an ICU. Four surfaces (the ventilator control screen, the control buttons of the syringe pump, the bed rails and the computer table located >1 m away from the patient) were systematically swabbed at least 8 h after any cleaning process. We analysed clinical, microbiological and radiological data to identify risk factors for SARS-CoV-2 environmental contamination. RESULTS: 40% of ICU patients were found to contaminate their environment. No particular trend emerged regarding the type of surface contaminated. Modality of oxygen support (high-flow nasal cannula oxygenation, invasive mechanical ventilation, standard oxygen mask) was not associated with the risk of environmental contamination. Univariate analysis showed that lymphopenia <0.7×109·L-1 was associated with environmental contamination. CONCLUSION: Despite small sample size, our study generated surprising results. Modality of oxygen support is not associated with risk of environmental contamination. Further studies are needed.

13.
Int J Antimicrob Agents ; 55(6): 106006, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-155307

ABSTRACT

The COVID-19 epidemic is believed to have started in late January 2020 in France. Here we report a case of a patient hospitalised in December 2019 in an intensive care unit in a hospital in the north of Paris for haemoptysis with no aetiological diagnosis. RT-PCR was performed retrospectively on the stored respiratory sample and confirmed the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Based on this result, it appears that the COVID-19 epidemic started much earlier in France.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adult , Aged , COVID-19 , Female , France/epidemiology , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL