Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Science ; 377(6603): eabq1841, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1891726

ABSTRACT

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Subject(s)
B-Lymphocytes , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , T-Lymphocytes , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
2.
Antiviral Res ; 203: 105332, 2022 07.
Article in English | MEDLINE | ID: covidwho-1821130

ABSTRACT

Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , COVID-19/drug therapy , COVID-19/therapy , Cost-Benefit Analysis , Immunization, Passive , SARS-CoV-2 , Sheep , Spike Glycoprotein, Coronavirus
3.
Transbound Emerg Dis ; 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1765049

ABSTRACT

Following findings in Northern America of SARS-CoV-2 infections in white-tailed deer, there is concern of similar infections in European deer and their potential as reservoirs of SARS-CoV-2 including opportunities for the emergence of new variants. UK deer sera were collected in 2020-2021 from 6 species and a hybrid with 1748 tested using anti-spike and anti-nucleocapsid serology assays. No samples were positive on both assays nor by surrogate neutralization testing. There is no evidence that spill-over infections of SARS-CoV-2 occurred from the human population to UK deer or that SARS-CoV-2 has been circulating in UK deer (over the study period). Although it cannot be ruled out, study results indicate that spill-over infections followed by circulation of SARS-CoV-2 to the most common European deer species is small.

SELECTION OF CITATIONS
SEARCH DETAIL