Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Pediatr Res ; 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2278884

ABSTRACT

BACKGROUND: The purpose of this study is to evaluate the association between SARS-CoV-2 viral load in respiratory secretions of infected children and signs/symptoms of COVID-19. METHODS: We reported the clinical characteristics of SARS-CoV-2-infected children during the study period. We compared viral load for several clinical variables, performed a predictive linear regression analysis to identify signs and symptoms significantly associated with viral load, and searched for discriminant viral load thresholds for symptomatic versus asymptomatic infections based on receiver-operating characteristics. RESULTS: A total of 570 patients were included. The median age was 4.75 years. Comparison of CT values by dichotomous variable showed higher viral loads in children with fever, respiratory symptoms, and previous exposure to SARS-CoV-2. The linear regression analysis confirmed a significant relationship between the CT value with these variables and with age, other symptoms, and asymptomaticity. In particular, infants with fever and SARS-CoV-2 exposure had higher viral loads. No viral load cut-offs were found to distinguish symptomatic from asymptomatic patients. CONCLUSION: Our study shows that fever, SARS-CoV-2 exposure, and respiratory symptoms are associated with higher viral load in children, especially infants, while age, presence of nonrespiratory symptoms, or absence of any symptoms are associated with lower viral load. IMPACT: Key message: the clinical variables that best predict viral load in infected children are history of previous exposure to a SARS-CoV-2-infected person and presence of fever and respiratory symptoms (higher viral load). Added value to the current literature: this is the first article to prove this point. IMPACT: SARS-CoV-2 viral load should not be used as a measure of clinical severity of COVID-19 in the pediatric population; however, lower viral load appears to be associated with asymptomatic COVID-19 in older children.

2.
Front Microbiol ; 13: 999783, 2022.
Article in English | MEDLINE | ID: covidwho-2142110

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD™ M10 assay performance was compared with Xpert® Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the "Istituto di Ricovero e Cura a Carattere Scientifico" (IRCCS) Ospedale Pediatrico Bambino Gesù, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert® Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert® Xpress SARS-CoV-2 results were considered as the reference, STANDARD™ M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV-2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs.

3.
Pathogens ; 11(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2043893

ABSTRACT

(1) Background: Massive social efforts to prevent the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have affected the epidemiological features of respiratory infections. (2) Methods: The study aims to describe the trend of hospitalizations for bronchiolitis among newborns and infants up to three months of life in Rome (Italy), in the pre-COVID-19 era and during the pandemic. (3) Results: We observed a marked decrease in the number of neonates and infants with bronchiolitis after national lockdowns in 2020 and the first months of 2021 and a similar trend in the number of bronchiolitis caused by respiratory syncytial virus (RSV). RSV was the leading pathogen responsible for bronchiolitis before the national lockdown in March 2020 (70.0% of cases), while Rhinovirus was the leading pathogen responsible for bronchiolitis (62.5%) during the pandemic while strict restrictions were ongoing. As Italy approached the COVID-19 vaccination target, the national government lifted some COVID-19-related restrictions. A surprising rebound of bronchiolitis (particularly cases caused by RSV) was observed in October 2021. (4) Conclusions: In this study, we describe for the first time the fluctuations over time of RSV bronchiolitis among newborns and young infants in Italy in relation to the restrictive measures containing the spread of the COVID-19 pandemic. Our results are in line with other countries' reports.

4.
Cell Host Microbe ; 30(3): 400-408.e4, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1650182

ABSTRACT

Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3-4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Vaccination , Vaccines, Synthetic , mRNA Vaccines
6.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438527

ABSTRACT

Specific memory B cells and antibodies are a reliable read-out of vaccine efficacy. We analysed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase, thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that the first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies, thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterilizing immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/cytology , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Immunoglobulin A/immunology , Immunologic Memory , Adult , Antibodies, Neutralizing/blood , Antigens, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine , Cryopreservation , Female , Health Personnel , Healthy Volunteers , Hospitals, Pediatric , Humans , Immunoglobulin G , Immunoglobulin M/immunology , Lactation , Male , Middle Aged , Mucous Membrane/immunology , Patient Safety , SARS-CoV-2 , Vaccination
7.
Int J Environ Res Public Health ; 18(18)2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1405459

ABSTRACT

BACKGROUND: Social distancing measures are used to reduce the spreading of COVID-19. The aim of this study was to assess the impact of local restrictions on the transmission of respiratory virus infections. METHODS: we retrospectively analyzed the nasopharyngeal samples of all patients (0-18 years old) admitted with respiratory symptoms in a large Italian tertiary hospital during the last three seasons from 2018 to 2021. RESULTS: A strong reduction in all viral respiratory infections was observed in the last season (2020-2021) compared to the two previous seasons (-79.69% and -80.66%, respectively). In particular, we found that during the epidemic period 2018-2019 and 2019-2020, the total number of Respiratory Syncytial Virus (RSV) cases was, respectively 726 and 689, while in the last season a total of five cases was detected. In the first months of 2018-2019 and 2019-2020, the total flu infections were 240 and 354, respectively, while in the last season we did not detect any influenza virus. As other viruses, the presence of Rhinovirus declined, but to a lesser extent: a total of 488 cases were assessed compared to the 1030 and 1165 cases of the two previous respective epidemic seasons. CONCLUSIONS: Public health interventions and distancing (including continuous use of face masks) settled to counter the pandemic spread of COVID-19 had a macroscopic impact on all respiratory virus transmission and related diseases, with a partial exception of Rhinovirus. The absence of viruses' circulation could result in a lack of immunity and increased susceptibility to serious infections in the next seasons.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Viruses , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology , Retrospective Studies , SARS-CoV-2 , Seasons
8.
Pediatr Res ; 91(5): 1196-1202, 2022 04.
Article in English | MEDLINE | ID: covidwho-1265938

ABSTRACT

BACKGROUND: The objective of this study is to test how certain signs and symptoms related to COVID-19 in children predict the positivity or negativity of the SARS-CoV-2 nasopharyngeal swab in children. METHODS: We review the data of children who were tested for SARS-CoV-2 for a suspected infection. We compared the clinical characteristics of the subjects who tested positive and negative, including the sensibility, positive and negative predictive value of different combination of signs and symptoms. RESULTS: Of all the suspected infected, 2596 tested negative (96.2%) and 103 tested positive (3.8%). The median age was 7.0 and 5.3 years for the positive and negative ones, respectively. The female to male ratio was ~1:1.3. Fever and respiratory symptoms were mostly reported. Most positive children had a prior exposure to SARS-CoV-2-infected subjects (59.2%). A total of 99.3% of patients without fever nor exposure to the virus proved negative to the SARS-CoV-2 test. CONCLUSIONS: Our study suggests that a child without fever or contact with infected subjects is SARS-CoV-2 negative. If this were to be confirmed, many resources would be spared, with improved care of both COVID-19 and not COVID-19-affected children. IMPACT: Key message: lack of fever and exposure to SARS-CoV-2-infected people highly predicts a negative results of the SARS-CoV-2 nasopharyngeal swab in the paediatric population. Added value to the current literature: this is the first article to prove this point. IMPACT: reduction of emergency department accesses of children with suspected SARS-CoV-2 infection; increased outpatient management of children with cough or other common respiratory symptoms of infancy; sparing of many human and material health resources.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Child , Cough/diagnosis , Emergency Service, Hospital , Female , Fever/diagnosis , Humans , Male
10.
Ital J Pediatr ; 47(1): 23, 2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1061200

ABSTRACT

BACKGROUND: During the first SARS-CoV-2 pandemic phase, the sudden closure of schools was one of the main measures to minimize the spread of the virus. In the second phase, several safety procedures were implemented to avoid school closure. To evaluate if the school is a safe place, students and staff of two school complexes of Rome were monitored to evaluate the efficacy of prevention measures inside the school buildings. METHODS: Oral secretions specimens were collected from 1262 subjects for a total of 3431 samples, collected over a 3 months period. Detection of Coronavirus SARS-CoV-2 was performed by real-time PCR. Target genes were represented by E gene, RdRP/S gene and N gene. RESULTS: Among the 3431 samples analyzed, just 16 sample resulted as positive or low positive: 1 sample in the first month, 12 samples in the second month and 3 in the third month. In each period of evaluation, all positive children attended different classes. CONCLUSIONS: Even if the school has the potential for spreading viruses, our preliminary results show the efficacy of the implementations undertaken in this setting to minimize virus diffusion. Our evidence suggests that school does not act as an amplifier for transmission of SARS-CoV-2 and can be really considered a safe place for students.


Subject(s)
COVID-19/prevention & control , Disease Transmission, Infectious/prevention & control , Infection Control/methods , Pneumonia, Viral/prevention & control , School Health Services/organization & administration , Adolescent , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing , Child , Female , Humans , Italy/epidemiology , Male , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL