Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Clin Med ; 11(6)2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1760681

ABSTRACT

The latest guidelines for the hospital care of patients affected by coronavirus disease 2019 (COVID-19)-related acute respiratory failure have moved towards the widely accepted use of noninvasive respiratory support (NIRS) as opposed to early intubation at the pandemic onset. The establishment of severe COVID-19 pneumonia goes through different pathophysiological phases that partially resemble typical acute respiratory distress syndrome (ARDS) and have been categorized into different clinical-radiological phenotypes. These can variably benefit on the application of external positive end-expiratory pressure (PEEP) during noninvasive mechanical ventilation, mainly due to variable levels of lung recruitment ability and lung compliance during different phases of the disease. A growing body of evidence suggests that intense respiratory effort producing excessive negative pleural pressure swings (Ppl) plays a critical role in the onset and progression of lung and diaphragm damage in patients treated with noninvasive respiratory support. Routine respiratory monitoring is mandatory to avoid the nasty continuation of NIRS in patients who are at higher risk for respiratory deterioration and could benefit from early initiation of invasive mechanical ventilation instead. Here we propose different monitoring methods both in the clinical and experimental settings adapted for this purpose, although further research is required to allow their extensive application in clinical practice. We reviewed the needs and available tools for clinical-physiological monitoring that aims at optimizing the ventilatory management of patients affected by acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.

2.
Eur Respir J ; 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1753100

ABSTRACT

OBJECTIVE: The coronavirus disease-2019 (COVID-19) oubreak has led to significant restrictions on routine medical care. We conducted a multicenter nationwide survey of PAH patients aiming at determining the consequences of the Governance measures on PAH management and risk of poor outcome in patients with COVID-19. METERIALS AND METHODS: Demographic data, number of in-person visits, 6-min walk and echocardiographic tests, BNP/NT-proBNP tests, WHO functional class assessment, presence of elective and non-elective hospitalisation, need for treatment escalation/initiation, newly diagnosed PAH, incidence of COVID-19 and mortality rates were considered in the present study including 25 Italian centers. Data were collected, double checked and tracked by institutional records, between the 1st March and 1st May 2020 to coincide with the first peak of COVID-19 and compared with the same time-period in 2019. RESULTS: Among 1922 PAH patients the incidence of SARS- CoV-2 infection and COVID-19 was 1.0% and 0.46%, respectively, the latter comparable to the overall Italian population (0.34%), but associated with 100% mortality. Less systematic activities were converted into more effective remote interfacing between clinicians and PAH patients allowing lower rates of hospitalisation and related death compared with 2019 (1.2% and 0.3% versus 1.9% and 0.5%, respectively; p<0.001). High level of attention is needed to avoid the potential risk of disease progression related to less aggressive escalation of treatment and the reduction in new PAH diagnosis compared with 2019. CONCLUSION: Cohesive partnership of health care providers with regional public health officials is needed to prioritise PAH patients for remote monitoring by dedicated tools.

3.
PLoS One ; 17(3): e0265202, 2022.
Article in English | MEDLINE | ID: covidwho-1753195

ABSTRACT

BACKGROUND: Non-invasive ventilation (NIV) has been increasingly used in COVID-19 patients. The limited physiological monitoring and the unavailability of respiratory mechanic measures, usually obtainable during invasive ventilation, is a limitation of NIV for ARDS and COVID-19 patients management. OBJECTIVES: This pilot study was aimed to evaluate the feasibility of non-invasively monitoring respiratory mechanics by oscillometry in COVID-19 patients with moderate-severe acute respiratory distress syndrome (ARDS) receiving NIV. METHOD: 15 COVID-19 patients affected by moderate-severe ARDS at the RICU (Respiratory Intensive Care Unit) of the University hospital of Cattinara, Trieste, Italy were recruited. Patients underwent oscillometry tests during short periods of spontaneous breathing between NIV sessions. RESULTS: Oscillometry proved to be feasible, reproducible and well-tolerated by patients. At admission, 8 of the 15 patients showed oscillometry parameters within the normal range which further slightly improved before discharge. At discharge, four patients had still abnormal respiratory mechanics, not exclusively linked to pre-existing respiratory comorbidities. Lung mechanics parameters were not correlated with oxygenation. CONCLUSIONS: Our results suggest that lung mechanics provide complementary information for improving patients phenotyping and personalisation of treatments during NIV in COVID 19 patients, especially in the presence of respiratory comorbidities where deterioration of lung mechanics may be less coupled with changes in oxygenation and more difficult to identify. Oscillometry may provide a valuable tool for monitoring lung mechanics in COVID 19 patients receiving NIV.


Subject(s)
COVID-19/therapy , Lung/physiopathology , Noninvasive Ventilation/methods , Oscillometry/methods , Respiratory Distress Syndrome/virology , Adult , Aged , COVID-19/physiopathology , Feasibility Studies , Female , Humans , Italy , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Retrospective Studies
4.
J Clin Med ; 11(5)2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1715447

ABSTRACT

As the clinical outcome of octogenarian patients hospitalised for COVID-19 is very poor, here we assessed the clinical characteristics and outcomes of patients aged 80 year or older hospitalised for COVID-19 receiving non-invasive respiratory support (NIRS). A multicentre, retrospective, observational study was conducted in seven hospitals in Northern Italy. All patients aged ≥80 years with COVID-19 associated hypoxemic acute respiratory failure (hARF) undergoing NIRS between 24 February 2020, and 31 March 2021, were included. Out of 252 study participants, 156 (61.9%) and 163 (64.6%) died during hospital stay and within 90 days from hospital admission, respectively. In this case, 228 (90.5%) patients only received NIRS (NIRS group), while 24 (9.5%) were treated with invasive mechanical ventilation (IMV) after NIRS failure (NIRS+IMV group). In-hospital mortality did not significantly differ between NIRS and NIRS+IMV group (61.0% vs. 70.8%, respectively; p = 0.507), while survival probability at 90 days was significantly higher for NIRS compared to NIRS+IMV patients (0.379 vs. 0.147; p = 0.0025). The outcome of octogenarian patients with COVID-19 receiving NIRS is quite poor. Caution should be used when considering transition from NIRS to IMV after NIRS failure.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318409

ABSTRACT

Background: In clinical practice, the striking similarities observed at computed tomography (CT) between the diseases make it difficult to distinguish a COVID-19 pneumonia from a progression of interstitial lung disease (ILD) secondary to Systemic sclerosis (SSc). The aim of the present study was to identify the main CT features that may help distinguishing SSc-ILD from COVID-19 pneumonia. Methods: This multicentric study included 22 international readers divided in the radiologist group (RAD) and non-radiologist group (nRAD). A total of 99 patients, 52 with COVID-19 and 47 with SSc-ILD, were included in the study.Findings: Fibrosis inside focal ground glass opacities (GGO) in the upper lobes;fibrosis in the lower lobe GGO;reticulations in lower lobes (especially if bilateral and symmetrical or associated with signs of fibrosis) were the CT features most frequently associated with SSc-ILD. The CT features most frequently associated with COVID- 19 pneumonia were: consolidation (CONS) in the lower lobes, CONS with peripheral (both central/peripheral or patchy distributions), anterior and posterior CONS and rounded-shaped GGOs in the lower lobes. After multivariate analysis, the presence of CONS in the lower lobes (p <0.0001) and signs of fibrosis in GGO in the lower lobes (p <0.0001) remained independently associated with COVID-19 pneumonia or SSc-ILD, respectively. A predictive score weas created which resulted positively associated with the COVID-19 diagnosis (96.1% sensitivity and 83.3% specificity).Interpretation: The CT differential diagnosis between COVID-19 pneumonia and SSc-ILD is possible through the combination our score and the radiologic expertise. If an overlap of both diseases is suspected, the presence of consolidation in the lower lobes may suggest a COVID-19 pneumonia while the presence of fibrosis inside GGO may indicate a SSc-ILD.Funding: No Funding were received for this study.Declaration of Interests: SC reports personal fees from NOVARTIS-SANOFI-LILLY-CELTHER-PFIZER-JANSSEN;MK reports grants and personal fees from Boehringer-Ingelheim, personal fees from Corbus, grants and personal fees from Chugai, grants and personal fees from Ono Pharmeceuticals, personal fees from Tanabe-Mitsubishi, personal fees from Astellas, personal fees from Gilead, personal fees from Mochida;ST reports personal fees from Boehringer Ingelheim, personal fees from Roche, outside the submitted work;GS reports personal fees from Boehringer Ingelheim;CB reports personal fees from Actelion, personal fees from Eli Lilly, grants from European Scleroderma Trial and Research (EUSTAR) group, grants from New Horizon Fellowship, grants from Foundation for Research in Rheumatology (FOREUM), grants from Fondazione Italiana per la Ricerca sull'Artrite (FIRA);CV reports grants and personal fees from Boehringer Ingelheim, grants and personal fees from F. Hoffmann-La Roche Ltd.;FL reports lectures fee from Roche and from Boehringer- Ingelheim;CPD reports grants and personal fees from GSK, personal fees from Boerhinger Ingelheim, grants from Servier, grants and personal fees from Inventiva, grants and personal fees from Arxx Therapeutics, personal fees from Corbus, personal fees from Sanofi, personal fees from Roche;FL reports grants and personal fees from GSK, personal fees from Boehringer Ingelheim, personal fees from Orion Pharma, personal fees from AstraZeneca, grants from MSD, personal fees from HIKMA, personal fees from Trudell International, grants and personal fees from Chiesi Farmaceutici, personal fees from Novartis Pharma;MH reports personal fees from Speaking fees from Actelion, Eli lilly and Pfizer;D K reports personal fees from Actelion, grants and personal fees from Bayer, grants and personal fees from Boehringer Ingelhem, personal fees from CSL Behring, grants and personal fees from Horizon, grants from Pfizer, personal fees from Corbus, grants and personal fees from BMS, outside the submitted work;and Dr Khanna is the Chief Medical officer of Eicos Sciences Inc and has s ock options. All the mentioned authors declared previous feed outside the submitted work. All other authors declare no competing interests.Ethics Approval Statement: This retrospective, observational, multicentric, international study was approved by the Institutional Ethics Committee of Florence Careggi hospital (protocol number 17104_oss).

6.
Front Biosci (Landmark Ed) ; 26(12): 1607-1612, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1614663

ABSTRACT

PURPOSE: The aim of this observational study was to highlight high resolution CT scan characteristics of COVID-19-associated pulmonary aspergillosis (CAPA) with a focus on the detection of de-novo appeared or evolved bronchiectasis. METHODS: From March 2020 to May 2021, we enrolled 350 consecutive mechanically ventilated ICU patients with COVID-19. Patients with CAPA and at least one chest CT scan performed within 15 days from the diagnosis were included. Two radiologists were asked to identify typical and atypical signs of COVID-19 pneumonia. Bronchiectasis locations were described and a modified Reiff score was calculated, as severity score. A total of 19 CAPA patients (median age 71.0, Interquartile range (IQR) 62.5-75.0; male 16, 84.2%) were included. RESULTS: According to the 2020 ECMM/ISHAM criteria, 18 patients had probable CAPA and one had proven CAPA. The median time between hospital admission and CT scan was 21 days (IQR 14.5-25.0). The incidence of bronchiectasis in the study population was 57.9% (n = 11). Tubular bronchiectasis was detected in 10 patients and were scored as follows: three patients had a score of 1, three patients had a score of score 2, one patient had a score of 5 and four patients had a score of 6. Eight patients had a previous CT scan (performed at hospital admission), among them: 5 patients developed de-novo bronchiectasis, while 2 patients demonstrated a volumetric increase of bronchiectasis. At the 6-months follow-up, the mortality rate for patients with CAPA was >60%. CONCLUSION: the radiologic detection of de-novo appearance or volumetric increase of bronchiectasis in COVID-19 should lead clinicians to search for fungal superinfections.


Subject(s)
Bronchiectasis , COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , Bronchiectasis/diagnostic imaging , Humans , Male , SARS-CoV-2 , Tomography , Tomography, X-Ray Computed
7.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1526592

ABSTRACT

Pneumomediastinum is a rare complication of ARDS but is more common during #COVID19. The fibrous hyaline degeneration of the tracheal rings seen in this autoptic series is an original observation that has not been previously described in COVID-19 patients. https://bit.ly/3vxTQde.

8.
Intensive Care Med ; 46(12): 2284-2296, 2020 12.
Article in English | MEDLINE | ID: covidwho-1451948

ABSTRACT

Current literature addressing the pharmacological principles guiding glucocorticoid (GC) administration in ARDS is scant. This paucity of information may have led to the heterogeneity of treatment protocols and misinterpretation of available findings. GCs are agonist compounds that bind to the GC receptor (GR) producing a pharmacological response. Clinical efficacy depends on the magnitude and duration of exposure to GR. We updated the meta-analysis of randomized trials investigating GC treatment in ARDS, focusing on treatment protocols and response. We synthesized the current literature on the role of the GR in GC therapy including genomic and non-genomic effects, and integrated current clinical pharmacology knowledge of various GCs, including hydrocortisone, methylprednisolone and dexamethasone. This review addresses the role dosage, timing of initiation, mode of administration, duration, and tapering play in achieving optimal response to GC therapy in ARDS. Based on RCTs' findings, GC plasma concentration-time profiles, and pharmacodynamic studies, optimal results are most likely achievable with early intervention, an initial bolus dose to achieve close to maximal GRα saturation, followed by a continuous infusion to maintain high levels of response throughout the treatment period. In addition, patients receiving similar GC doses may experience substantial between-patient variability in plasma concentrations affecting clinical response. GC should be dose-adjusted and administered for a duration targeting clinical and laboratory improvement, followed by dose-tapering to achieve gradual recovery of the suppressed hypothalamic-pituitary-adrenal (HPA) axis. These findings have practical clinical relevance. Future RCTs should consider these pharmacological principles in the study design and interpretation of findings.


Subject(s)
Glucocorticoids , Respiratory Distress Syndrome , Humans , Hypothalamo-Hypophyseal System , Methylprednisolone , Pituitary-Adrenal System , Respiratory Distress Syndrome/drug therapy
9.
Med Lav ; 112(5): 331-339, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1498269

ABSTRACT

BACKGROUND: the sensitivity and specificity of a rapid antibody test were investigated for the screening of healthcare workers. METHODS: the serum of 389 health care workers exposed to COVID-19 patients or with symptoms, were analysed. All workers underwent monthly the screening for SARS-CoV-2 with detection of viral RNA in nasopharyngeal swabs by RT-PCR. IgG antibody detection in serum was performed by Chemiluminescence Immunoassay (CLIA) and by the Rapid test (KHB diagnostic kit for SARS CoV-2 IgM/IgG antibody after a median of 7.6 weeks (25°-75° percentiles 6.6-11.5). RESULTS: the rapid test resulted positive in 31/132 (23.5%), 16/135 (11.8%) and 0/122 cases in COVID-19 positive individuals, in those with only SARS-CoV-2 IgG antibodies and in those negative for both tests, respectively. Sensitivity was 17.6% (CI95% 13.2-22.7) and 23.5% (CI95% 16.5-31.6), and specificity was 100% (CI95% 97-100) and 100% (CI95% 97-100) considering Rapid test vs CLIA IgG or Rapid test vs SARS-CoV-2 positive RNA detection, respectively. CONCLUSION: the KHB Rapid test is not suitable for the screening of workers with previous COVID-19 infection.


Subject(s)
COVID-19 , COVID-19 Testing , Health Personnel , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity
10.
Encyclopedia of Respiratory Medicine (Second Edition) ; : 10-17, 2022.
Article in English | ScienceDirect | ID: covidwho-1415139

ABSTRACT

The alveolar epithelium is a thin continuous liquid lining layer primarily composed of two types of epithelial cells, i.e., alveolar type I (ATI) and alveolar type II (ATII) cells. ATI cells have a broad flattened morphology and cover about 95% of the gas exchange surface of the lung. Whilst, ATIIs are small cuboidal cells with characteristic lamellar inclusions and apical microvilli that line the remainder of the alveolus (about 5%). ATII cells make and secrete a pulmonary surfactant, which reduces the surface tension in the alveoli preventing alveolar collapse during respiration and reducing the energy required to inflate the lungs, thereby increasing pulmonary compliance. These cells also transport ions from the apical to the basolateral surface so as to keep the alveoli relatively fluid free and have roles in the innate immune response. Importantly, they are the progenitor cells for the alveolar epithelium in the adult lung. Having a very thin cytoplasm, a limited number of mitochondria and covering a higher surface area, ATI cells are easily damaged during lung injury, after which they are replaced by ATII cells through the alveolar epithelium regeneration process. Despite ATII cells are considered an essential part of this process, numerous interstitial lung diseases are characterized by hyperplastic ATIIs: in fact, they may also contribute to the fibroproliferative reaction by secreting a number of growth factors and proinflammatory molecules.

11.
J Clin Med ; 10(17)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390668

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate High-Resolution CT (HRCT) findings in SARS-CoV-2-related ARDS survivors treated with prolonged low-dose methylprednisolone after hospital discharge. METHODS: A total of 44 consecutive patients (M: 32, F: 12, average age: 64), hospitalised in our department from April to September 2020 for SARS-CoV-2-related ARDS, who had a postdischarge CT scan, were enrolled into this retrospective study. We reviewed the electronic medical charts to collect laboratory, clinical, and demographic data. The CT findings were evaluated and classified according to lung segmental distribution. The imaging findings were correlated with spirometry results and included ground glass opacities (GGOs), consolidations, reticulations, bronchiectasis/bronchiolectasis, linear bands, and loss of pulmonary volume. RESULTS: Alterations in the pulmonary parenchyma were observed in 97.7% of patients at HRCT (median time lapse between ARDS diagnosis and HRCT: 2.8 months, range 0.9 to 6.7). The most common findings were linear bands (84%), followed by GGOs (75%), reticulations (34%), bronchiolectasis (32%), consolidations (30%), bronchiectasis (30%) and volume loss (25%). They had a symmetric distribution, and both lower lobes were the most affected areas. CONCLUSIONS: A reticular pattern with a posterior distribution was observed 3 months after discharge from severe COVID-19 pneumonia, and this differs from previously described postCOVID-19 fibrotic-like changes. We hypothesized that the systematic use of prolonged low-dose of corticosteroid could be the main reason of this different CT scan appearance.

12.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1389392

ABSTRACT

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.


Subject(s)
Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/physiology , Lung Diseases/physiopathology , Lung/physiology , Alveolar Epithelial Cells/cytology , Animals , COVID-19/physiopathology , Humans , Immunity, Innate , Ions/metabolism , Lung/anatomy & histology , Lung Diseases/etiology , Lung Diseases/pathology , Pulmonary Surfactant-Associated Proteins/metabolism , Regeneration
13.
Front Microbiol ; 12: 671813, 2021.
Article in English | MEDLINE | ID: covidwho-1359201

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recently demonstrated in the sputum or saliva, suggesting how the shedding of viral RNA outlasts the end of symptoms. Recent data from transcriptome analysis show that the oral cavity mucosa harbors high levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), highlighting its role as a double-edged sword for SARS-CoV-2 body entrance or interpersonal transmission. Here, we studied the oral microbiota structure and inflammatory profile of 26 naive severe coronavirus disease 2019 (COVID-19) patients and 15 controls by 16S rRNA V2 automated targeted sequencing and magnetic bead-based multiplex immunoassays, respectively. A significant diminution in species richness was observed in COVID-19 patients, along with a marked difference in beta-diversity. Species such as Prevotella salivae and Veillonella infantium were distinctive for COVID-19 patients, while Neisseria perflava and Rothia mucilaginosa were predominant in controls. Interestingly, these two groups of oral species oppositely clustered within the bacterial network, defining two distinct Species Interacting Groups (SIGs). COVID-19-related pro-inflammatory cytokines were found in both oral and serum samples, along with a specific bacterial consortium able to counteract them. We introduced a new parameter, named CytoCOV, able to predict COVID-19 susceptibility for an unknown subject at 71% of power with an Area Under Curve (AUC) equal to 0.995. This pilot study evidenced a distinctive oral microbiota composition in COVID-19 subjects, with a definite structural network in relation to secreted cytokines. Our results would be usable in clinics against COVID-19, using bacterial consortia as biomarkers or to reduce local inflammation.

15.
Rheumatology (Oxford) ; 61(4): 1600-1609, 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1328934

ABSTRACT

OBJECTIVE: The aim of this study was to identify the main CT features that may help in distinguishing a progression of interstitial lung disease (ILD) secondary to SSc from COVID-19 pneumonia. METHODS: This multicentric study included 22 international readers grouped into a radiologist group (RADs) and a non-radiologist group (nRADs). A total of 99 patients, 52 with COVID-19 and 47 with SSc-ILD, were included in the study. RESULTS: Fibrosis inside focal ground-glass opacities (GGOs) in the upper lobes; fibrosis in the lower lobe GGOs; reticulations in lower lobes (especially if bilateral and symmetrical or associated with signs of fibrosis) were the CT features most frequently associated with SSc-ILD. The CT features most frequently associated with COVID- 19 pneumonia were: consolidation (CONS) in the lower lobes, CONS with peripheral (both central/peripheral or patchy distributions), anterior and posterior CONS and rounded-shaped GGOs in the lower lobes. After multivariate analysis, the presence of CONs in the lower lobes (P < 0.0001) and signs of fibrosis in GGOs in the lower lobes (P < 0.0001) remained independently associated with COVID-19 pneumonia and SSc-ILD, respectively. A predictive score was created that was positively associated with COVID-19 diagnosis (96.1% sensitivity and 83.3% specificity). CONCLUSION: CT diagnosis differentiating between COVID-19 pneumonia and SSc-ILD is possible through a combination of the proposed score and radiologic expertise. The presence of consolidation in the lower lobes may suggest COVID-19 pneumonia, while the presence of fibrosis inside GGOs may indicate SSc-ILD.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Scleroderma, Systemic , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19 Testing , Fibrosis , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/etiology , Scleroderma, Systemic/complications , Scleroderma, Systemic/diagnostic imaging , Scleroderma, Systemic/pathology , Tomography, X-Ray Computed
17.
Expert Opin Investig Drugs ; 30(5): 505-518, 2021 May.
Article in English | MEDLINE | ID: covidwho-1132283

ABSTRACT

Background: COVID-19 has several overlapping phases. Treatments to date have focused on the late stage of disease in hospital. Yet, the pandemic is by propagated by the viral phase in out-patients. The current public health strategy relies solely on vaccines to prevent disease.Methods: We searched the major national registries, pubmed.org, and the preprint servers for all ongoing, completed and published trial results.Results: As of 2/15/2021, we found 111 publications reporting findings on 14 classes of agents, and 9 vaccines. There were 62 randomized controlled studies, the rest retrospective observational analyses. Only 21 publications dealt with outpatient care. Remdesivir and high titer convalescent plasma have emergency use authorization for hospitalized patients in the U.S.A. There is also support for glucocorticoid treatment of the COVID-19 respiratory distress syndrome. Monoclonal antibodies are authorized for outpatients, but supply is inadequate to treat all at time of diagnosis. Favipiravir, ivermectin, and interferons are approved in certain countries.Expert Opinion: Vaccines and antibodies are highly antigen specific, and new SARS-Cov-2 variants are appearing. We call on public health authorities to authorize treatments with known low-risk and possible benefit for outpatients in parallel with universal vaccination.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/therapy , Ambulatory Care/methods , Antibodies, Monoclonal/administration & dosage , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/prevention & control , Hospitalization , Humans , Immunization, Passive , Randomized Controlled Trials as Topic , Time Factors
18.
AIDS Rev ; 23(1): 40-47, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1070036

ABSTRACT

COVID-19, caused by SARS-CoV-2, continues to be a major health problem since its first description in Wuhan, China, in December 2019. Multiple drugs have been tried to date in the treatment of COVID-19. Critical to treatment of COVID-19 and advancing therapeutics is an appreciation of the multiple stages of this disease and the importance of timing for investigation and use of various agents. We considered articles related to COVID-19 indexed on PubMed published January 1, 2020-November 15, 2020, and considered papers on the medRxiv preprint server. We identified relevant stages of COVID-19 including three periods: pre-exposure, incubation, and detectable viral replication; and five phases: the viral symptom phase, the early inflammatory phase, the secondary infection phase, the multisystem inflammatory phase, and the tail phase. This common terminology should serve as a framework to guide when COVID-19 therapeutics being studied or currently in use is likely to provide benefit rather than harm.


Subject(s)
COVID-19/drug therapy , Clinical Trials as Topic , SARS-CoV-2 , COVID-19/complications , COVID-19/immunology , Cytokine Release Syndrome/etiology , Humans , RNA, Viral/analysis , Time Factors , Virus Replication
20.
J. bras. pneumol ; 46(5):e20200226-e20200226, 2020.
Article in English | LILACS (Americas), Grey literature | ID: grc-742173

ABSTRACT

ABSTRACT Objective: To investigate the diagnostic accuracy of a chest X-ray (CXR) score and of clinical and laboratory data in predicting the clinical course of patients with SARS coronavirus 2 (SARS-CoV-2) infection. Methods: This is a pilot multicenter retrospective study including patients with SARS-CoV-2 infection admitted to the ERs in three hospitals in Italy between February and March of 2020. Two radiologists independently evaluated the baseline CXR of the patients using a semi-quantitative score to determine the severity of lung involvement: a score of 0 represented no lung involvement, whereas scores of 1 to 4 represented the first (less severe) to the fourth (more severe) quartiles regarding the severity of lung involvement. Relevant clinical and laboratory data were collected. The outcome of patients was defined as severe if noninvasive ventilation (NIV) or intubation was necessary, or if the patient died. Results: Our sample comprised 140 patients. Most of the patients were symptomatic (132/138;95.7%), and 133/140 patients (95.0%) presented with opacities on CXR at admission. Of the 140 patients, 7 (5.0%) showed no lung involvement, whereas 58 (41.4%), 31 (22.1%), 26 (18.6%), and 18 (12.9%), respectively, scored 1, 2, 3, and 4. In our sample, 66 patients underwent NIV or intubation, 37 of whom scored 1 or 2 on baseline CXR, and 28 patients died. Conclusions: The severity score based on CXR seems to be able to predict the clinical progression in cases that scored 0, 3, or 4. However, the score alone cannot predict the clinical progression in patients with mild-to-moderate parenchymal involvement (scores 1 and 2). RESUMO Objetivo: Investigar a acurácia diagnóstica de um escore de radiografia de tórax (RxT) e também de dados clínicos e laboratoriais na previsão da evolução clínica de pacientes com infecção por SARS coronavirus 2 (SARS-CoV-2). Métodos: Estudo piloto multicêntrico retrospectivo incluindo pacientes com infecção por SARS-CoV-2 internados nos PSs de três hospitais na Itália entre fevereiro e março de 2020. Dois radiologistas avaliaram as RxT iniciais dos pacientes de forma independente utilizando um escore semiquantitativo para determinar a gravidade do comprometimento pulmonar: escore 0 representava ausência de comprometimento pulmonar, enquanto escores de 1 a 4 representavam o primeiro (menos grave) ao quarto (mais grave) quartil de gravidade do comprometimento pulmonar. Coletaram-se dados clínicos e laboratoriais relevantes. O desfecho dos pacientes foi definido como grave se foi necessária ventilação não invasiva (VNI) ou intubação ou se o paciente faleceu. Resultados: Nossa amostra foi composta por 140 pacientes. A maioria era sintomática (132/138;95,7%), e 133/140 (95,0%) apresentavam opacidades na RxT da admissão. Dos 140 pacientes, 7 (5,0%) não apresentavam comprometimento pulmonar, enquanto 58 (41,4%), 31 (22,1%), 26 (18,6%) e 18 (12,9%), respectivamente, receberam escore 1, 2, 3 e 4. Em nossa amostra, 66 pacientes foram submetidos a VNI ou intubação, 37 dos quais receberam escore 1 ou 2 na RxT inicial, e 28 pacientes faleceram. Conclusões: O escore de gravidade baseado em RxT parece ser capaz de prever a evolução clínica em casos com escore 0, 3 ou 4. No entanto, o escore isoladamente não consegue prever a evolução clínica de pacientes com comprometimento leve a moderado do parênquima (escores 1 e 2).

SELECTION OF CITATIONS
SEARCH DETAIL