Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Thrombosis Research ; 213:S77-S83, 2022.
Article in English | PMC | ID: covidwho-1866216
4.
Clin Infect Dis ; 73(12): 2294-2297, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592484
5.
Anaesth Crit Care Pain Med ; 41(1): 101016, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588589
6.
J Thromb Haemost ; 19(12): 3080-3089, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526386

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with macro- and micro-thromboses, which are triggered by endothelial cell activation, coagulopathy, and uncontrolled inflammatory response. Conventional antithrombotic agents are under assessment in dozens of randomized controlled trials (RCTs) in patients with COVID-19, with preliminary results not demonstrating benefit in several studies. OBJECTIVES: Given the possibility that more novel agents with antithrombotic effects may have a potential utility for management of patients with COVID-19, we assessed ongoing RCTs including these agents with their potential mechanism of action in this population. METHODS: We searched clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to identify RCTs of novel antithrombotic agents in patients with COVID-19. RESULTS: Based on a systematic literature search, 27 RCTs with 10 novel antithrombotic agents (including nafamostat, dociparstat, rNAPc2, and defibrotide) were identified. The results from these trials have not been disseminated yet. The studied drugs in the ongoing or completed RCTs include agents affecting the coagulation cascade, drugs affecting endothelial activation, and mixed acting agents. Their postulated antithrombotic mechanisms of action and their potential impact on patient management are summarized. CONCLUSION: Some novel antithrombotic agents have pleiotropic anti-inflammatory and antiviral effects, which may help reduce the viral load or fibrosis, and improve oxygenation. Results from ongoing RCTs will elucidate their actual role in the management of patients with COVID-19.


Subject(s)
COVID-19 , Fibrinolytic Agents , Antiviral Agents , Fibrinolytic Agents/adverse effects , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
7.
JAMA ; 326(17): 1703-1712, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1525396

ABSTRACT

Importance: Acutely ill inpatients with COVID-19 typically receive antithrombotic therapy, although the risks and benefits of this intervention among outpatients with COVID-19 have not been established. Objective: To assess whether anticoagulant or antiplatelet therapy can safely reduce major adverse cardiopulmonary outcomes among symptomatic but clinically stable outpatients with COVID-19. Design, Setting, and Participants: The ACTIV-4B Outpatient Thrombosis Prevention Trial was designed as a minimal-contact, adaptive, randomized, double-blind, placebo-controlled trial to compare anticoagulant and antiplatelet therapy among 7000 symptomatic but clinically stable outpatients with COVID-19. The trial was conducted at 52 US sites between September 2020 and June 2021; final follow-up was August 5, 2021. Prior to initiating treatment, participants were required to have platelet count greater than 100 000/mm3 and estimated glomerular filtration rate greater than 30 mL/min/1.73 m2. Interventions: Random allocation in a 1:1:1:1 ratio to aspirin (81 mg orally once daily; n = 164), prophylactic-dose apixaban (2.5 mg orally twice daily; n = 165), therapeutic-dose apixaban (5 mg orally twice daily; n = 164), or placebo (n = 164) for 45 days. Main Outcomes and Measures: The primary end point was a composite of all-cause mortality, symptomatic venous or arterial thromboembolism, myocardial infarction, stroke, or hospitalization for cardiovascular or pulmonary cause. The primary analyses for efficacy and bleeding events were limited to participants who took at least 1 dose of trial medication. Results: On June 18, 2021, the trial data and safety monitoring board recommended early termination because of lower than anticipated event rates; at that time, 657 symptomatic outpatients with COVID-19 had been randomized (median age, 54 years [IQR, 46-59]; 59% women). The median times from diagnosis to randomization and from randomization to initiation of study treatment were 7 days and 3 days, respectively. Twenty-two randomized participants (3.3%) were hospitalized for COVID-19 prior to initiating treatment. Among the 558 patients who initiated treatment, the adjudicated primary composite end point occurred in 1 patient (0.7%) in the aspirin group, 1 patient (0.7%) in the 2.5-mg apixaban group, 2 patients (1.4%) in the 5-mg apixaban group, and 1 patient (0.7%) in the placebo group. The risk differences compared with placebo for the primary end point were 0.0% (95% CI not calculable) in the aspirin group, 0.7% (95% CI, -2.1% to 4.1%) in the 2.5-mg apixaban group, and 1.4% (95% CI, -1.5% to 5.0%) in the 5-mg apixaban group. Risk differences compared with placebo for bleeding events were 2.0% (95% CI, -2.7% to 6.8%), 4.5% (95% CI, -0.7% to 10.2%), and 6.9% (95% CI, 1.4% to 12.9%) among participants who initiated therapy in the aspirin, prophylactic apixaban, and therapeutic apixaban groups, respectively, although none were major. Findings inclusive of all randomized patients were similar. Conclusions and Relevance: Among symptomatic clinically stable outpatients with COVID-19, treatment with aspirin or apixaban compared with placebo did not reduce the rate of a composite clinical outcome. However, the study was terminated after enrollment of 9% of participants because of an event rate lower than anticipated. Trial Registration: ClinicalTrials.gov Identifier: NCT04498273.


Subject(s)
Aspirin/therapeutic use , COVID-19/drug therapy , Factor Xa Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyridones/therapeutic use , Thrombosis/prevention & control , Adult , Aspirin/adverse effects , COVID-19/complications , Dose-Response Relationship, Drug , Double-Blind Method , Early Termination of Clinical Trials , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Female , Hemorrhage/chemically induced , Hospitalization , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyridones/administration & dosage , Pyridones/adverse effects
8.
Res Pract Thromb Haemost ; 5(2): 253-260, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1525485

ABSTRACT

As a result of the coronavirus disease 2019 pandemic, the International Society on Thrombosis and Haemostasis (ISTH), like many societies around the world, canceled their in-person hematology congress planned for Milan, Italy, in July 2020. As a result, the first virtual ISTH congress in the organisation's 51-year history was delivered, inviting free registration from across the globe. As part of the social media support, marketing, and scientific dissemination efforts for the virtual congress, the ISTH assembled a group of official Twitter Ambassadors, which represented the broad and diverse ISTH community. Ambassadors were tasked to tweet daily throughout the congress and to share their commentary on the hematology research being presented with the "#ISTH2020" hashtag. Ambassadors were also supported by Twitter activities from the two official ISTH-affiliated journals: the Journal of Thrombosis and Haemostasis (JTH) and Research and Practice in Thrombosis and Haemostasis (RPTH). In this forum and through the Twitter ambassadors' lens, we present the Twitter Ambassadors' experience, reflect on the impact of social media on the ISTH 2020 congress, and share this experience with the wider scientific community. Specifically, we report on the role of Twitter communication for virtual meetings, discuss the pros and cons of the virtual congress, and offer Twitter-related recommendations for future virtual or blended congresses. We conclude that the ISTH Twitter Ambassador program broadened social media engagement and offers a novel route to improve social connectivity in the virtual research congress setting.

9.
Eur Heart J ; 42(39): 4073-4076, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1522175
10.
Nat Med ; 27(4): 601-615, 2021 04.
Article in English | MEDLINE | ID: covidwho-1517636

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in global healthcare crises and strained health resources. As the population of patients recovering from COVID-19 grows, it is paramount to establish an understanding of the healthcare issues surrounding them. COVID-19 is now recognized as a multi-organ disease with a broad spectrum of manifestations. Similarly to post-acute viral syndromes described in survivors of other virulent coronavirus epidemics, there are increasing reports of persistent and prolonged effects after acute COVID-19. Patient advocacy groups, many members of which identify themselves as long haulers, have helped contribute to the recognition of post-acute COVID-19, a syndrome characterized by persistent symptoms and/or delayed or long-term complications beyond 4 weeks from the onset of symptoms. Here, we provide a comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae. Finally, we discuss relevant considerations for the multidisciplinary care of COVID-19 survivors and propose a framework for the identification of those at high risk for post-acute COVID-19 and their coordinated management through dedicated COVID-19 clinics.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Acute Disease , COVID-19/epidemiology , COVID-19/ethnology , COVID-19/therapy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/therapy , Humans , Patient Advocacy , Syndrome , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy , Venous Thromboembolism/epidemiology , Venous Thromboembolism/prevention & control
11.
JAMA ; 326(17): 1703-1712, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1460106

ABSTRACT

Importance: Acutely ill inpatients with COVID-19 typically receive antithrombotic therapy, although the risks and benefits of this intervention among outpatients with COVID-19 have not been established. Objective: To assess whether anticoagulant or antiplatelet therapy can safely reduce major adverse cardiopulmonary outcomes among symptomatic but clinically stable outpatients with COVID-19. Design, Setting, and Participants: The ACTIV-4B Outpatient Thrombosis Prevention Trial was designed as a minimal-contact, adaptive, randomized, double-blind, placebo-controlled trial to compare anticoagulant and antiplatelet therapy among 7000 symptomatic but clinically stable outpatients with COVID-19. The trial was conducted at 52 US sites between September 2020 and June 2021; final follow-up was August 5, 2021. Prior to initiating treatment, participants were required to have platelet count greater than 100 000/mm3 and estimated glomerular filtration rate greater than 30 mL/min/1.73 m2. Interventions: Random allocation in a 1:1:1:1 ratio to aspirin (81 mg orally once daily; n = 164), prophylactic-dose apixaban (2.5 mg orally twice daily; n = 165), therapeutic-dose apixaban (5 mg orally twice daily; n = 164), or placebo (n = 164) for 45 days. Main Outcomes and Measures: The primary end point was a composite of all-cause mortality, symptomatic venous or arterial thromboembolism, myocardial infarction, stroke, or hospitalization for cardiovascular or pulmonary cause. The primary analyses for efficacy and bleeding events were limited to participants who took at least 1 dose of trial medication. Results: On June 18, 2021, the trial data and safety monitoring board recommended early termination because of lower than anticipated event rates; at that time, 657 symptomatic outpatients with COVID-19 had been randomized (median age, 54 years [IQR, 46-59]; 59% women). The median times from diagnosis to randomization and from randomization to initiation of study treatment were 7 days and 3 days, respectively. Twenty-two randomized participants (3.3%) were hospitalized for COVID-19 prior to initiating treatment. Among the 558 patients who initiated treatment, the adjudicated primary composite end point occurred in 1 patient (0.7%) in the aspirin group, 1 patient (0.7%) in the 2.5-mg apixaban group, 2 patients (1.4%) in the 5-mg apixaban group, and 1 patient (0.7%) in the placebo group. The risk differences compared with placebo for the primary end point were 0.0% (95% CI not calculable) in the aspirin group, 0.7% (95% CI, -2.1% to 4.1%) in the 2.5-mg apixaban group, and 1.4% (95% CI, -1.5% to 5.0%) in the 5-mg apixaban group. Risk differences compared with placebo for bleeding events were 2.0% (95% CI, -2.7% to 6.8%), 4.5% (95% CI, -0.7% to 10.2%), and 6.9% (95% CI, 1.4% to 12.9%) among participants who initiated therapy in the aspirin, prophylactic apixaban, and therapeutic apixaban groups, respectively, although none were major. Findings inclusive of all randomized patients were similar. Conclusions and Relevance: Among symptomatic clinically stable outpatients with COVID-19, treatment with aspirin or apixaban compared with placebo did not reduce the rate of a composite clinical outcome. However, the study was terminated after enrollment of 9% of participants because of an event rate lower than anticipated. Trial Registration: ClinicalTrials.gov Identifier: NCT04498273.


Subject(s)
Aspirin/therapeutic use , COVID-19/drug therapy , Factor Xa Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyridones/therapeutic use , Thrombosis/prevention & control , Adult , Aspirin/adverse effects , COVID-19/complications , Dose-Response Relationship, Drug , Double-Blind Method , Early Termination of Clinical Trials , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Female , Hemorrhage/chemically induced , Hospitalization , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyridones/administration & dosage , Pyridones/adverse effects
12.
J Thromb Haemost ; 19(12): 3080-3089, 2021 12.
Article in English | MEDLINE | ID: covidwho-1429990

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with macro- and micro-thromboses, which are triggered by endothelial cell activation, coagulopathy, and uncontrolled inflammatory response. Conventional antithrombotic agents are under assessment in dozens of randomized controlled trials (RCTs) in patients with COVID-19, with preliminary results not demonstrating benefit in several studies. OBJECTIVES: Given the possibility that more novel agents with antithrombotic effects may have a potential utility for management of patients with COVID-19, we assessed ongoing RCTs including these agents with their potential mechanism of action in this population. METHODS: We searched clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to identify RCTs of novel antithrombotic agents in patients with COVID-19. RESULTS: Based on a systematic literature search, 27 RCTs with 10 novel antithrombotic agents (including nafamostat, dociparstat, rNAPc2, and defibrotide) were identified. The results from these trials have not been disseminated yet. The studied drugs in the ongoing or completed RCTs include agents affecting the coagulation cascade, drugs affecting endothelial activation, and mixed acting agents. Their postulated antithrombotic mechanisms of action and their potential impact on patient management are summarized. CONCLUSION: Some novel antithrombotic agents have pleiotropic anti-inflammatory and antiviral effects, which may help reduce the viral load or fibrosis, and improve oxygenation. Results from ongoing RCTs will elucidate their actual role in the management of patients with COVID-19.


Subject(s)
COVID-19 , Fibrinolytic Agents , Antiviral Agents , Fibrinolytic Agents/adverse effects , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
14.
Blood ; 136(Supplement 1):56-58, 2020.
Article in English | PMC | ID: covidwho-1338999

ABSTRACT

Introduction: Hospitalized patients with COVID-19 may have increased risk of venous thromboembolism (VTE) and pulmonary embolism (PE). Cancer and anti-cancer therapies are well-known additional risk factors for VTE. Nonetheless, the VTE risk in patients with both cancer and COVID-19 infection remains unknown as recent studies have not found an association due to sample size limitations. We report the incidence of and risk factors for VTE and PE among hospitalized patients with cancer and COVID-19.Methods: The COVID-19 and Cancer Consortium (CCC19) developed an international retrospective cohort study (NCT04354701) to investigate the clinical course and complications of COVID-19 among adult patients with an active or previous history of cancer. For the current study, cumulative incidences of clinically detected VTE and PE were analyzed among hospitalized patients with laboratory confirmed SARS-CoV-2. Pre-specified subgroup analysis was performed to examine the interaction between intensive care unit (ICU) admission and recent anti-cancer therapy on VTE outcomes. Bivariable logistic regression analyses were conducted to assess the association between baseline variables and VTE;unadjusted odds ratios (OR) and 95% confidence interval (CI) were reported. These variables included age, sex, obesity (BMI>30), race/ethnicity, performance status, comorbidities, blood type, history of VTE, recent surgery, recent anti-cancer therapy, cancer subtype VTE risk grouping (adapted from Khorana Score), pre-admission anticoagulant or antiplatelet use, and ICU admission status.Results: From March 17, 2020 to July 31, 2020, 3914 patients were enrolled in the CCC19 registry. For the present analysis, patients were excluded if they had inadequate follow-up <4 weeks (n=950), were not admitted to the hospital (n=1008), or had unknown VTE outcomes (n=327). Among the 1629 hospitalized patients, the median follow-up was 35 days. Patients were comprised from 3 countries (92% US, 6% Canada, 2% Spain), with a median age of 70, 45% female, and a median comorbidity score of 3. Racial/ethnic breakdown included 44% White, 26% Black, 14% Hispanic, and 13% Other. A past history of VTE was reported in 9% of patients;pre-admission anticoagulant use and antiplatelet use were reported in 25% and 35% of patients, respectively. The most common cancer types included prostate (18%), breast (15%), and lymphoma (14%). Based on the VTE risk grouping adapted from the original Khorana Score, 34% were low-risk, 29% were high-risk, and 6% were very high-risk. The receipt of anti-cancer therapy within 3 months of diagnosis was observed in 39% of patients (17% cytotoxic chemotherapy, 11% targeted therapy, 7% endocrine therapy, and 5% immunotherapy).The overall incidence of inhospital VTE and PE was 9.3% and 5.2%, respectively. The corresponding estimates were 13.4% and 7.9% among the ICU subgroup. On bivariable analysis, significant predictors of VTE included ICU admission, recent anti-cancer therapy, active cancer status, cancer subtype VTE risk grouping, and pre-admission antiplatelet use (Table 1). Pre-admission anticoagulant use had significant associations with PE but not VTE. Multivariable adjustment is ongoing to identify independent risk factor for VTE and clarify the impact of pre-admission anticoagulant/antiplatelet use controlled for other potential confounders.Both ICU admission status and anti-cancer therapy increased the risk of VTE independently. Non-ICU patients not on anti-cancer therapy had the lowest incidence of VTE (4.5%), whose estimate was similar to that reported in the non-cancer hospitalized population with COVID-19 infection. Patients with either ICU admission or recent anti-cancer therapy had the intermediate risk (11.0%), whereas ICU patients with recent anti-cancer therapy had the highest risk (16.7%). We did not observe confounding or effect modification by the ICU subgroup on the association between anti-cancer therapy and VTE.Conclusion: In this cohort study of hospitalized patients with cancer and COVID-19, recent anti-cancer t erapy, active disease, high-risk VTE cancer subtypes, and ICU admission have increased risk of VTE and PE, while pre-admission anticoagulant/antiplatelet therapy may reduce the risk. This information will aid in developing a risk prediction tool for VTE in hospitalized patients with cancer and COVID-19.

15.
Int J Lab Hematol ; 43 Suppl 1: 29-35, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319315

ABSTRACT

Vascular endothelial injury is a hallmark of acute infection at both the microvascular and macrovascular levels. The hallmark of SARS-CoV-2 infection is the current COVID-19 clinical sequelae of the pathophysiologic responses of hypercoagulability and thromboinflammation associated with acute infection. The acute lung injury that initially occurs in COVID-19 results from vascular and endothelial damage from viral injury and pathophysiologic responses that produce the COVID-19-associated coagulopathy. Clinicians should continue to focus on the vascular endothelial injury that occurs and evaluate potential therapeutic interventions that may benefit those with new infections during the current pandemic as they may also be of benefit for future pathogens that generate similar thromboinflammatory responses. The current Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) studies are important projects that will further define our management strategies. At the time of writing this report, two mRNA vaccines are now being distributed and will hopefully have a major impact on slowing the global spread and subsequent thromboinflammatory injury we see clinically in critically ill patients.


Subject(s)
COVID-19/complications , Pandemics , SARS-CoV-2 , Thrombophilia/etiology , Vasculitis/etiology , Anticoagulants/therapeutic use , COVID-19/blood , COVID-19/immunology , Child , Disseminated Intravascular Coagulation/etiology , Endothelium, Vascular/injuries , Endothelium, Vascular/physiopathology , Female , Fibrinolysis , Forecasting , Humans , Lung/blood supply , Lung/pathology , Pregnancy , Pregnancy Complications, Infectious/blood , Thromboembolism/etiology , Thromboembolism/prevention & control
16.
J Thromb Haemost ; 18(7): 1559-1561, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317983
17.
J Thromb Haemost ; 19(10): 2522-2532, 2021 10.
Article in English | MEDLINE | ID: covidwho-1309788

ABSTRACT

BACKGROUND: Hospitalized patients with COVID-19 have increased risks of venous (VTE) and arterial thromboembolism (ATE). Active cancer diagnosis and treatment are well-known risk factors; however, a risk assessment model (RAM) for VTE in patients with both cancer and COVID-19 is lacking. OBJECTIVES: To assess the incidence of and risk factors for thrombosis in hospitalized patients with cancer and COVID-19. METHODS: Among patients with cancer in the COVID-19 and Cancer Consortium registry (CCC19) cohort study, we assessed the incidence of VTE and ATE within 90 days of COVID-19-associated hospitalization. A multivariable logistic regression model specifically for VTE was built using a priori determined clinical risk factors. A simplified RAM was derived and internally validated using bootstrap. RESULTS: From March 17, 2020 to November 30, 2020, 2804 hospitalized patients were analyzed. The incidence of VTE and ATE was 7.6% and 3.9%, respectively. The incidence of VTE, but not ATE, was higher in patients receiving recent anti-cancer therapy. A simplified RAM for VTE was derived and named CoVID-TE (Cancer subtype high to very-high risk by original Khorana score +1, VTE history +2, ICU admission +2, D-dimer elevation +1, recent systemic anti-cancer Therapy +1, and non-Hispanic Ethnicity +1). The RAM stratified patients into two cohorts (low-risk, 0-2 points, n = 1423 vs. high-risk, 3+ points, n = 1034) where VTE occurred in 4.1% low-risk and 11.3% high-risk patients (c statistic 0.67, 95% confidence interval 0.63-0.71). The RAM performed similarly well in subgroups of patients not on anticoagulant prior to admission and moderately ill patients not requiring direct ICU admission. CONCLUSIONS: Hospitalized patients with cancer and COVID-19 have elevated thrombotic risks. The CoVID-TE RAM for VTE prediction may help real-time data-driven decisions in this vulnerable population.


Subject(s)
COVID-19 , Neoplasms , Venous Thromboembolism , Cohort Studies , Humans , Neoplasms/complications , Neoplasms/epidemiology , Risk Assessment , SARS-CoV-2 , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology
19.
J Am Coll Cardiol ; 77(15): 1903-1921, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1235916

ABSTRACT

Endothelial injury and microvascular/macrovascular thrombosis are common pathophysiological features of coronavirus disease-2019 (COVID-19). However, the optimal thromboprophylactic regimens remain unknown across the spectrum of illness severity of COVID-19. A variety of antithrombotic agents, doses, and durations of therapy are being assessed in ongoing randomized controlled trials (RCTs) that focus on outpatients, hospitalized patients in medical wards, and patients critically ill with COVID-19. This paper provides a perspective of the ongoing or completed RCTs related to antithrombotic strategies used in COVID-19, the opportunities and challenges for the clinical trial enterprise, and areas of existing knowledge, as well as data gaps that may motivate the design of future RCTs.


Subject(s)
COVID-19/drug therapy , Fibrinolytic Agents/therapeutic use , Thromboembolism/prevention & control , COVID-19/complications , Humans , Randomized Controlled Trials as Topic , Thromboembolism/virology
20.
Res Pract Thromb Haemost ; 5(4): e12521, 2021 May.
Article in English | MEDLINE | ID: covidwho-1222696

ABSTRACT

BACKGROUND: Patients hospitalized with severe acute respiratory syndrome coronavirus 2 infection are at risk for thrombotic complications necessitating use of therapeutic unfractionated heparin (UFH). Full-dose anticoagulation limits requirements for organ support interventions in moderately ill patients with coronavirus disease 2019 (COVID-19). Given this benefit, it is important to evaluate response to therapeutic anticoagulation in this population. OBJECTIVES: The aim of this study was to assess therapeutic UFH infusions and associated bleeding risk in patients with COVID-19. PATIENTS/METHODS: This retrospective cohort study includes patients at Brigham and Women's Hospital, Boston, Massachusetts, receiving weight-based nursing-nomogram titrated UFH infusion during a 10-week surge in COVID-19 hospitalizations. Of 358 patients on therapeutic UFH during this interval, 97 (27.1%) had confirmed COVID-19. Patient characteristics, laboratory values, and information regarding UFH infusion and bleeding events were obtained from the electronic medical record. RESULTS: Patients who were COVID-19 positive had fewer therapeutic activatrd partial thromboplastin times (aPTTs) compared to COVID-19-negative patients (median rate, 40.0% vs 53.1%; P < .0005). Both major and clinically relevant nonmajor bleeding were increased in COVID-19-positive patients, with major bleeding observed in 10.3% (95% confidence interval [CI], 5.7%-17.9%) of patients who were COVID-19 positive and 3.1% (95% CI, 1.6%-5.9%) of patients who were COVID-19 negative (P < .005). In logistic regression, bleeding events were associated with receiving UFH for longer than 7 days, but not platelet count, coagulation, or inflammatory measurements. CONCLUSIONS: Our data indicate a higher incidence of bleeding complications in patients with COVID-19 receiving weight-based nursing-nomogram titrated UFH infusions despite a higher prevalence of subtherapeutic aPTTs in this population. These data underscore the need for prospective studies aimed at improving the quality and safety of therapeutic anticoagulation in patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL