Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Preprint in English | EuropePMC | ID: ppcovidwho-291594

ABSTRACT

Objective: With the COVID-19 pandemic, documenting whether health care workers (HCWs) are at increased risk of SARS-CoV-2 contamination and identifying risk factors is of major concern. Methods In this multicenter prospective cohort study, HCWs from frontline departments were included in March and April 2020 and followed for 3 months. SARS-CoV-2 serology was performed at month 0 (M0), M1, and M3 and RT-PCR in case of symptoms. The primary outcome was laboratory-confirmed SARS-CoV-2 infection at M3. Risk factors of laboratory-confirmed SARS-CoV-2 infection at M3 were identified by multivariate logistic regression. Results Among 1,062 HCWs (median [interquartile range] age, 33 [28-42] years;758 [71.4%] women;321 [30.2%] physicians), the cumulative incidence of SARS-CoV-2 infection at M3 was 14.6% (95% confidence interval [CI] [12.5;16.9]). Risk factors were the working department specialty, with increased risk for intensive care units (odds ratio 1.80, 95%CI [0.38;8.58]), emergency departments (3.91 [0.83;18.43]) and infectious diseases departments (4.22 [0.92;18.28]);active smoking was associated with reduced risk (0.36 [0.21;0.63]). Age, sex, professional category, number of years of experience in the job or department, and public transportation use were not significantly associated with laboratory-confirmed SARS-CoV-2 infection at M3. Conclusion The rate of SARS-CoV-2 infection in frontline HCWs was 14.6% at the end of the first COVID-19 wave in Paris and occurred mainly early. The study argues for an origin of professional in addition to private life contamination and therefore including HCWs in the first-line vaccination target population. It also highlights that smokers were at lower risk. Trial registration: The study has been registered on ClinicalTrials.gov: NCT04304690 first registered on 11/03/2020.

3.
Crit Care ; 25(1): 355, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1463260

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) was frequently used to treat patients with severe coronavirus disease-2019 (COVID-19)-associated acute respiratory distress (ARDS) during the initial outbreak. Care of COVID-19 patients evolved markedly during the second part of 2020. Our objective was to compare the characteristics and outcomes of patients who received ECMO for severe COVID-19 ARDS before or after July 1, 2020. METHODS: We included consecutive adults diagnosed with COVID-19 in Paris-Sorbonne University Hospital Network ICUs, who received ECMO for severe ARDS until January 28, 2021. Characteristics and survival probabilities over time were estimated during the first and second waves. Pre-ECMO risk factors predicting 90-day mortality were assessed using multivariate Cox regression. RESULTS: Characteristics of the 88 and 71 patients admitted, respectively, before and after July 1, 2020, were comparable except for older age, more frequent use of dexamethasone (18% vs. 82%), high-flow nasal oxygenation (19% vs. 82%) and/or non-invasive ventilation (7% vs. 37%) after July 1. Respective estimated probabilities (95% confidence intervals) of 90-day mortality were 36% (27-47%) and 48% (37-60%) during the first and the second periods. After adjusting for confounders, probability of 90-day mortality was significantly higher for patients treated after July 1 (HR 2.27, 95% CI 1.02-5.07). ECMO-related complications did not differ between study periods. CONCLUSIONS: 90-day mortality of ECMO-supported COVID-19-ARDS patients increased significantly after July 1, 2020, and was no longer comparable to that of non-COVID ECMO-treated patients. Failure of prolonged non-invasive oxygenation strategies before intubation and increased lung damage may partly explain this outcome.


Subject(s)
COVID-19/mortality , Extracorporeal Membrane Oxygenation/mortality , Extracorporeal Membrane Oxygenation/trends , Hospitalization/trends , Respiratory Distress Syndrome/mortality , Severity of Illness Index , Adult , COVID-19/therapy , Cohort Studies , Female , Follow-Up Studies , Humans , Intensive Care Units/trends , Male , Middle Aged , Mortality/trends , Paris/epidemiology , Respiratory Distress Syndrome/therapy , Treatment Outcome
5.
PLoS One ; 16(4): e0249889, 2021.
Article in English | MEDLINE | ID: covidwho-1190168

ABSTRACT

BACKGROUND: Current intensive care unit (ICU) sedation guidelines recommend strategies using non-benzodiazepine sedatives. This survey was undertaken to explore inhaled ICU sedation practice in France. METHODS: In this national survey, medical directors of French adult ICUs were contacted by phone or email between July and August 2019. ICU medical directors were questioned about the characteristics of their department, their knowledge on inhaled sedation, and practical aspects of inhaled sedation use in their department. RESULTS: Among the 374 ICUs contacted, 187 provided responses (50%). Most ICU directors (73%) knew about the use of inhaled ICU sedation and 21% used inhaled sedation in their unit, mostly with the Anaesthetic Conserving Device (AnaConDa, Sedana Medical). Most respondents had used volatile agents for sedation for <5 years (63%) and in <20 patients per year (75%), with their main indications being: failure of intravenous sedation, severe asthma or bronchial obstruction, and acute respiratory distress syndrome. Sevoflurane and isoflurane were mainly used (88% and 20%, respectively). The main reasons for not using inhaled ICU sedation were: "device not available" (40%), "lack of medical interest" (37%), "lack of familiarity or knowledge about the technique" (35%) and "elevated cost" (21%). Most respondents (80%) were overall satisfied with the use of inhaled sedation. Almost 75% stated that inhaled sedation was a seducing alternative to intravenous sedation. CONCLUSION: This survey highlights the widespread knowledge about inhaled ICU sedation in France but shows its limited use to date. Differences in education and knowledge, as well as the recent and relatively scarce literature on the use of volatile agents in the ICU, might explain the diverse practices that were observed. The low rate of mild adverse effects, as perceived by respondents, and the users' satisfaction, are promising for this potentially important tool for ICU sedation.


Subject(s)
Anesthetics, Inhalation/administration & dosage , Health Knowledge, Attitudes, Practice , Hypnotics and Sedatives/administration & dosage , Intensive Care Units/statistics & numerical data , Drug Utilization/statistics & numerical data , France , Health Personnel/psychology , Health Personnel/statistics & numerical data , Humans , Isoflurane/administration & dosage , Sevoflurane/administration & dosage , Surveys and Questionnaires
6.
Chest ; 159(4): 1426-1436, 2021 04.
Article in English | MEDLINE | ID: covidwho-921554

ABSTRACT

BACKGROUND: Sigh is a cyclic brief recruitment maneuver: previous physiologic studies showed that its use could be an interesting addition to pressure support ventilation to improve lung elastance, decrease regional heterogeneity, and increase release of surfactant. RESEARCH QUESTION: Is the clinical application of sigh during pressure support ventilation (PSV) feasible? STUDY DESIGN AND METHODS: We conducted a multicenter noninferiority randomized clinical trial on adult intubated patients with acute hypoxemic respiratory failure or ARDS undergoing PSV. Patients were randomized to the no-sigh group and treated by PSV alone, or to the sigh group, treated by PSV plus sigh (increase in airway pressure to 30 cm H2O for 3 s once per minute) until day 28 or death or successful spontaneous breathing trial. The primary end point of the study was feasibility, assessed as noninferiority (5% tolerance) in the proportion of patients failing assisted ventilation. Secondary outcomes included safety, physiologic parameters in the first week from randomization, 28-day mortality, and ventilator-free days. RESULTS: Two-hundred and fifty-eight patients (31% women; median age, 65 [54-75] years) were enrolled. In the sigh group, 23% of patients failed to remain on assisted ventilation vs 30% in the no-sigh group (absolute difference, -7%; 95% CI, -18% to 4%; P = .015 for noninferiority). Adverse events occurred in 12% vs 13% in the sigh vs no-sigh group (P = .852). Oxygenation was improved whereas tidal volume, respiratory rate, and corrected minute ventilation were lower over the first 7 days from randomization in the sigh vs no-sigh group. There was no significant difference in terms of mortality (16% vs 21%; P = .337) and ventilator-free days (22 [7-26] vs 22 [3-25] days; P = .300) for the sigh vs no-sigh group. INTERPRETATION: Among hypoxemic intubated ICU patients, application of sigh was feasible and without increased risk. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03201263; URL: www.clinicaltrials.gov.


Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Aged , Female , Humans , Intubation, Intratracheal , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/physiopathology , Respiratory Insufficiency/physiopathology , Respiratory Mechanics
10.
Am J Respir Crit Care Med ; 203(3): 307-317, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1041932

ABSTRACT

Rationale: Whether severe coronavirus disease (COVID-19) is a significant risk factor for the development of invasive fungal superinfections is of great medical interest and remains, for now, an open question.Objectives: We aim to assess the occurrence of invasive fungal respiratory superinfections in patients with severe COVID-19.Methods: We conducted the study on patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related pneumonia admitted to five ICUs in France who had respiratory and serum sampling performed for specific screening of fungal complications.Measurements and Main Results: The study population included a total of 145 patients; the median age was 55 years old. Most of them were male (n = 104; 72%), were overweight (n = 99; 68%), and had hypertension (n = 83; 57%) and diabetes (n = 46; 32%). Few patients presented preexisting host risk factors for invasive fungal infection (n = 20; 14%). Their global severity was high; all patients were on invasive mechanical ventilation, and half (n = 73, 54%) were on extracorporeal membrane oxygenation support. Mycological analysis included 2,815 mycological tests (culture, galactomannan, ß-glucan, and PCR) performed on 475 respiratory samples and 532 sera. A probable/putative invasive pulmonary mold infection was diagnosed in 7 (4.8%) patients and linked to high mortality. Multivariate analysis indicates a significantly higher risk for solid organ transplant recipients (odds ratio, = 4.66; interquartile range, 1.98-7.34; P = 0.004). False-positive fungal test and clinically irrelevant colonization, which did not require the initiation of antifungal treatment, was observed in 25 patients (17.2%).Conclusions: In patients with no underlying immunosuppression, severe SARS-CoV-2-related pneumonia seems at low risk of invasive fungal secondary infection, especially aspergillosis.


Subject(s)
COVID-19/therapy , Invasive Fungal Infections/epidemiology , Lung Diseases, Fungal/epidemiology , Aged , COVID-19/complications , COVID-19/mortality , Female , France , Hospitalization , Humans , Invasive Fungal Infections/diagnosis , Lung Diseases, Fungal/diagnosis , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , Risk Factors
11.
La Presse Médicale Formation ; 2021.
Article in English | ScienceDirect | ID: covidwho-1009722
12.
Intensive Care Med ; 46(12): 2136-2152, 2020 12.
Article in English | MEDLINE | ID: covidwho-932503

ABSTRACT

Although the acute respiratory distress syndrome (ARDS) is well defined by the development of acute hypoxemia, bilateral infiltrates and non-cardiogenic pulmonary edema, ARDS is heterogeneous in terms of clinical risk factors, physiology of lung injury, microbiology, and biology, potentially explaining why pharmacologic therapies have been mostly unsuccessful in treating ARDS. Identifying phenotypes of ARDS and integrating this information into patient selection for clinical trials may increase the chance for efficacy with new treatments. In this review, we focus on classifying ARDS by the associated clinical disorders, physiological data, and radiographic imaging. We consider biologic phenotypes, including plasma protein biomarkers, gene expression, and common causative microbiologic pathogens. We will also discuss the issue of focusing clinical trials on the patient's phase of lung injury, including prevention, administration of therapy during early acute lung injury, and treatment of established ARDS. A more in depth understanding of the interplay of these variables in ARDS should provide more success in designing and conducting clinical trials and achieving the goal of personalized medicine.


Subject(s)
Phenotype , Respiratory Distress Syndrome/genetics , Biomarkers , Humans , Precision Medicine/trends , Radiography/methods , Radiography/trends , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/physiopathology
13.
Intensive Care Med ; 46(12): 2342-2356, 2020 12.
Article in English | MEDLINE | ID: covidwho-917111

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is one of the most demanding conditions in an Intensive Care Unit (ICU). Management of analgesia and sedation in ARDS is particularly challenging. An expert panel was convened to produce a "state-of-the-art" article to support clinicians in the optimal management of analgesia/sedation in mechanically ventilated adults with ARDS, including those with COVID-19. Current ICU analgesia/sedation guidelines promote analgesia first and minimization of sedation, wakefulness, delirium prevention and early rehabilitation to facilitate ventilator and ICU liberation. However, these strategies cannot always be applied to patients with ARDS who sometimes require deep sedation and/or paralysis. Patients with severe ARDS may be under-represented in analgesia/sedation studies and currently recommended strategies may not be feasible. With lightened sedation, distress-related symptoms (e.g., pain and discomfort, anxiety, dyspnea) and patient-ventilator asynchrony should be systematically assessed and managed through interprofessional collaboration, prioritizing analgesia and anxiolysis. Adaptation of ventilator settings (e.g., use of a pressure-set mode, spontaneous breathing, sensitive inspiratory trigger) should be systematically considered before additional medications are administered. Managing the mechanical ventilator is of paramount importance to avoid the unnecessary use of deep sedation and/or paralysis. Therefore, applying an "ABCDEF-R" bundle (R = Respiratory-drive-control) may be beneficial in ARDS patients. Further studies are needed, especially regarding the use and long-term effects of fast-offset drugs (e.g., remifentanil, volatile anesthetics) and the electrophysiological assessment of analgesia/sedation (e.g., electroencephalogram devices, heart-rate variability, and video pupillometry). This review is particularly relevant during the COVID-19 pandemic given drug shortages and limited ICU-bed capacity.


Subject(s)
Analgesia/standards , Hypnotics and Sedatives/therapeutic use , Respiratory Distress Syndrome/drug therapy , Analgesia/methods , Guidelines as Topic , Humans , Pain Management/methods
15.
Lancet Respir Med ; 8(11): 1121-1131, 2020 11.
Article in English | MEDLINE | ID: covidwho-712037

ABSTRACT

BACKGROUND: Patients with COVID-19 who develop severe acute respiratory distress syndrome (ARDS) can have symptoms that rapidly evolve to profound hypoxaemia and death. The efficacy of extracorporeal membrane oxygenation (ECMO) for patients with severe ARDS in the context of COVID-19 is unclear. We aimed to establish the clinical characteristics and outcomes of patients with respiratory failure and COVID-19 treated with ECMO. METHODS: This retrospective cohort study was done in the Paris-Sorbonne University Hospital Network, comprising five intensive care units (ICUs) and included patients who received ECMO for COVID-19 associated ARDS. Patient demographics and daily pre-ECMO and on-ECMO data and outcomes were collected. Possible outcomes over time were categorised into four different states (states 1-4): on ECMO, in the ICU and weaned off ECMO, alive and out of ICU, or death. Daily probabilities of occupation in each state and of transitions between these states until day 90 post-ECMO onset were estimated with use of a multi-state Cox model stratified for each possible transition. Follow-up was right-censored on July 10, 2020. FINDINGS: From March 8 to May 2, 2020, 492 patients with COVID-19 were treated in our ICUs. Complete day-60 follow-up was available for 83 patients (median age 49 [IQR 41-56] years and 61 [73%] men) who received ECMO. Pre-ECMO, 78 (94%) patients had been prone-positioned; their median driving pressure was 18 (IQR 16-21) cm H2O and PaO2/FiO2 was 60 (54-68) mm Hg. At 60 days post-ECMO initiation, the estimated probabilities of occupation in each state were 6% (95% CI 3-14) for state 1, 18% (11-28) for state 2, 45% (35-56) for state 3, and 31% (22-42) for state 4. 35 (42%) patients had major bleeding and four (5%) had a haemorrhagic stroke. 30 patients died. INTERPRETATION: The estimated 60-day survival of ECMO-rescued patients with COVID-19 was similar to that of studies published in the past 2 years on ECMO for severe ARDS. If another COVID-19 outbreak occurs, ECMO should be considered for patients developing refractory respiratory failure despite optimised care. FUNDING: None.


Subject(s)
Coronavirus Infections/complications , Extracorporeal Membrane Oxygenation , Pneumonia, Viral/complications , Respiratory Distress Syndrome/therapy , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections/therapy , Female , France , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/virology , Retrospective Studies , SARS-CoV-2 , Survival Rate
16.
Anaesth Crit Care Pain Med ; 39(5): 563-569, 2020 10.
Article in English | MEDLINE | ID: covidwho-696277

ABSTRACT

PURPOSE: To survey haemodynamic monitoring and management practices in intensive care patients with the coronavirus disease 2019 (COVID-19). METHODS: A questionnaire was shared on social networks or via email by the authors and by Anaesthesia and/or Critical Care societies from France, Switzerland, Belgium, Brazil, and Portugal. Intensivists and anaesthetists involved in COVID-19 ICU care were invited to answer 14 questions about haemodynamic monitoring and management. RESULTS: Globally, 1000 questionnaires were available for analysis. Responses came mainly from Europe (n = 460) and America (n = 434). According to a majority of respondents, COVID-19 ICU patients frequently or very frequently received continuous vasopressor support (56%) and had an echocardiography performed (54%). Echocardiography revealed a normal cardiac function, a hyperdynamic state (43%), hypovolaemia (22%), a left ventricular dysfunction (21%) and a right ventricular dilation (20%). Fluid responsiveness was frequently assessed (84%), mainly using echo (62%), and cardiac output was measured in 69%, mostly with echo as well (53%). Venous oxygen saturation was frequently measured (79%), mostly from a CVC blood sample (94%). Tissue perfusion was assessed biologically (93%) and clinically (63%). Pulmonary oedema was detected and quantified mainly using echo (67%) and chest X-ray (61%). CONCLUSION: Our survey confirms that vasopressor support is not uncommon in COVID-19 ICU patients and suggests that different haemodynamic phenotypes may be observed. Ultrasounds were used by many respondents, to assess cardiac function but also to predict fluid responsiveness and quantify pulmonary oedema. Although we observed regional differences, current international guidelines were followed by most respondents.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Critical Care/methods , Health Care Surveys , Hemodynamic Monitoring , Pandemics , Pneumonia, Viral/therapy , Africa/epidemiology , Americas/epidemiology , Asia/epidemiology , Australia/epidemiology , COVID-19 , Cardiotonic Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Disease Management , Echocardiography/statistics & numerical data , Europe/epidemiology , Fluid Therapy , Hemodynamics/drug effects , Humans , Oxygen/blood , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Procedures and Techniques Utilization , Pulmonary Edema/etiology , Pulmonary Edema/physiopathology , SARS-CoV-2 , Shock/etiology , Shock/physiopathology , Vasoconstrictor Agents/therapeutic use
18.
Anaesth Crit Care Pain Med ; 39(3): 329-332, 2020 06.
Article in English | MEDLINE | ID: covidwho-245318

ABSTRACT

The first wave of the SARS-CoV-2 pandemic required an unprecedented and historic increase in critical care capacity on a global scale in France. Authors and members from the ACUTE and REANIMATION committees of the French Society of Anaesthesia and Intensive Care (SFAR) wished to share experience and insights gained during the first weeks of this pandemic. These were summarised following the World Health Organization Response Checklist and detailed according to the subsequent subheadings: 1. Command and Control, 2. Communication, 3. Safety and Security, 4. Triage, 5. Surge Capacity, 6. Continuity of essential services, 7. Human resources, 8. Logistics and supply management, 9. Training/Preparation, 10. Psychological comfort for patients and next of kin, 11. Learning and 12. Post disaster recovery. These experience-based recommendations, consensual across all members from both committees of our national society, establish a practical framework for medical teams, either spared by the first wave of severe COVID patients or preparing for the second one.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Practice Guidelines as Topic , Bed Conversion , COVID-19 , Checklist , Continuity of Patient Care/organization & administration , Coronavirus Infections/epidemiology , Disaster Planning/organization & administration , France/epidemiology , Health Personnel/education , Health Services Accessibility/organization & administration , Health Services Needs and Demand , Humans , Interdisciplinary Communication , Patient Safety , Pneumonia, Viral/epidemiology , Professional Staff Committees/organization & administration , Professional-Family Relations , SARS-CoV-2 , Social Support , Triage/organization & administration , Workforce/organization & administration , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...