Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ProQuest Central;
Preprint in English | ProQuest Central | ID: ppcovidwho-328235

ABSTRACT

Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.

2.
Expert Rev Vaccines ; 20(12): 1561-1569, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440547

ABSTRACT

INTRODUCTION: Vaccines are a major achievement in medical sciences, but the development of more effective vaccines against infectious diseases is essential for prevention and control of emerging pathogens worldwide. The application of omics technologies has advanced vaccinology through the characterization of host-vector-pathogen molecular interactions and the identification of candidate protective antigens. However, major challenges such as host immunity, pathogen and environmental factors, vaccine efficacy and safety need to be addressed. Vaccinomics provides a platform to address these challenges and improve vaccine efficacy and safety. AREAS COVERED: In this review, we summarize current information on vaccinomics and propose quantum vaccinomics approaches to further advance vaccine development through the identification and combination of antigen protective epitopes, the immunological quantum. The COVID-19 pandemic caused by SARS-CoV-2 is an example of emerging infectious diseases with global impact on human health. EXPERT OPINION: Vaccines are required for the effective and environmentally sustainable intervention for the control of emerging infectious diseases worldwide. Recent advances in vaccinomics provide a platform to address challenges in improving vaccine efficacy and implementation. As proposed here, quantum vaccinomics will contribute to vaccine development, efficacy, and safety by facilitating antigen combinations to target pathogen infection and transmission in emerging infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Antigens , COVID-19 , Communicable Diseases, Emerging/prevention & control , Humans , Pandemics
3.
Front Immunol ; 12: 730710, 2021.
Article in English | MEDLINE | ID: covidwho-1441108

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2-host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.


Subject(s)
COVID-19/blood , COVID-19/immunology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Aryldialkylphosphatase/blood , Biomarkers/blood , Carboxypeptidase B2/blood , Female , Humans , Interleukin-1/blood , Interleukin-4/blood , Male , Middle Aged , Pregnancy Proteins/blood , Prognosis , Proteome/analysis , Proteomics , Retrospective Studies , Selenoprotein P/blood
4.
J Med Virol ; 93(4): 2065-2075, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217368

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to progress in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti-α-Gal immunoglobulin M (IgM)/IgG antibodies produced in response to bacterial microbiota. In addition to anti-α-Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to α-Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to α-Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti-α-Gal IgE, IgM, and IgG antibody titers and alteration of anti-α-Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the α-Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with α-Gal epitopes to modify the microbiota and increase α-Gal-induced protective immune response and reduce severity of COVID-19.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Disaccharides/immunology , Immunity, Humoral , Aged , Aged, 80 and over , Antibodies, Bacterial/analysis , COVID-19/diagnosis , Epitopes/immunology , Female , Humans , Immunoglobulin G/analysis , Male , Microbiota/immunology , Middle Aged , Severity of Illness Index , Spain
5.
Parasit Vectors ; 13(1): 409, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-707467

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Recent evidence raised the question about the possibility that cats may be a domestic host for SARS-CoV-2 with unknown implications in disease dissemination. Based on the fact that the domestic cat flea, Ctenocephalides felis, are abundant ectoparasites infesting humans, companion animals and wildlife and that coronavirus-like agents have been identified in the ectoparasite tick vector, Ixodes uriae of seabirds, herein we considered the presence of coronaviruses in general and SARS-CoV-2 in particular in C. felis. We identified coronavirus-derived and cell receptor angiotensin-converting enzyme RNA/proteins in C. felis. Although current evidence suggests that pets are probably dead-end-hosts with small risk of transmission to humans, our results suggested that cat flea may act as biological and/or mechanical vectors of SARS-CoV. Although preliminary, these results indicate a possibility of ectoparasites acting as reservoirs and vectors of SARS-CoV and related beta-coronavirus although with little disease risk due to systemic transmission route, low viremia, virus attenuation or other unknown factors. These results support the need to further study the role of animal SARS-CoV-2 hosts and their ectoparasite vectors in COVID-19 disease spread.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus/isolation & purification , Ctenocephalides/virology , Insect Vectors/virology , Pneumonia, Viral/veterinary , Amino Acid Sequence , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL