Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Immunol ; 13: 882918, 2022.
Article in English | MEDLINE | ID: covidwho-1993786

ABSTRACT

In light of the decreasing immune protection against symptomatic SARS-CoV-2 infection after initial vaccinations and the now dominant immune-evasive Omicron variants, 'booster' vaccinations are regularly performed to restore immune responses. Many individuals have received a primary heterologous prime-boost vaccination with long intervals between vaccinations, but the resulting long-term immunity and the effects of a subsequent 'booster', particularly against Omicron BA.1, have not been defined. We followed a cohort of 23 young adults, who received a primary heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, over a 7-month period and analysed how they responded to a BNT162b2 'booster'. We show that already after the primary heterologous vaccination, neutralization titers against Omicron BA.1 are recognizable but that humoral and cellular immunity wanes over the course of half a year. Residual responsive memory T cells recognized spike epitopes of the early SARS-CoV-2 B.1 strain as well as the Delta and BA.1 variants of concern (VOCs). However, the remaining antibody titers hardly neutralized these VOCs. The 'booster' vaccination was well tolerated and elicited both high antibody titers and increased memory T cell responses against SARS-CoV-2 including BA.1. Strikingly, in this young heterologously vaccinated cohort the neutralizing activity after the 'booster' was almost as potent against BA.1 as against the early B.1 strain. Our results suggest that a 'booster' after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccination , Young Adult
2.
Commun Biol ; 5(1): 681, 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1927105

ABSTRACT

The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses.


Subject(s)
COVID-19 , Peptidomimetics , COVID-19/drug therapy , Cell Culture Techniques , Humans , Molecular Docking Simulation , Peptidomimetics/pharmacology , SARS-CoV-2 , Serine Endopeptidases/genetics
3.
Viruses ; 14(6)2022 06 15.
Article in English | MEDLINE | ID: covidwho-1911637

ABSTRACT

Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor ß (TGF-ß) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-ß1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-ß1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-ß stimulation. Since a TGF-ß dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.


Subject(s)
COVID-19 , Transforming Growth Factor beta1 , Cell Fusion , Furin , Humans , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
4.
Adv Sci (Weinh) ; 9(20): e2201378, 2022 07.
Article in English | MEDLINE | ID: covidwho-1838136

ABSTRACT

Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.


Subject(s)
COVID-19 , Metal Nanoparticles , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Gold , Mice , SARS-CoV-2 , Virus Internalization
5.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317546

ABSTRACT

Preexisting diabetes increases the risk of a severe course of the pandemic coronavirus disease 2019 (COVID-19). Vice versa, exacerbations of a preexisting diabetes as well as new-onset diabetes have been reported upon SARS-CoV-2 infection. Thus, there is an imperative need to clarify whether human pancreatic endocrine cells organized within an islet of Langerhans are permissive for and affected by SARS-CoV-2 infection, and to elucidate the mechanisms underlying the development of diabetes upon COVID-19. Here, we (i) defined ACE2 and TMPRSS2 expression patterns in human pancreatic endocrine and exocrine cell types, (ii) employed human pancreatic islet cultures to demonstrate susceptibility to SARS-CoV-2 infection and to viral replication in β-cells, (iii) showed that SARS-CoV-2 attenuates glucose-stimulated insulin secretion, and (iv) tested remdesivir as eventually effective to prevent β-cell failure. In addition, we (v) visualized viral particles replicating in endocrine pancreatic cells and define their subcellular localization patterns via transmission electron microscopy, and finally (vi) present examples of cell type specific pancreatic infection patterns of COVID-19 deceased patients. Overall, our data demonstrate that SARS-CoV-2 can infect both the exocrine and endocrine compartments of the pancreas and can perturb β-cell integrity, which might lead to an increased risk for diabetes.

6.
J Clin Virol ; 147: 105062, 2022 02.
Article in English | MEDLINE | ID: covidwho-1670705

ABSTRACT

Since diagnostic sampling material must be considered as infectious, we evaluated whether extraction buffers of SARS-CoV-2 rapid antigen test kits may inactivate SARS-CoV-2. Of concern, seven of nine tested buffers lacked potent virucidal activity. To reduce risk of infection during assay performance, virucidal antigen extraction buffers that efficiently inactivate virus should replace the extraction buffers in these commercially available point-of-care devices.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunologic Tests , Point-of-Care Systems
7.
EBioMedicine ; 75: 103761, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587930

ABSTRACT

BACKGROUND: Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. METHODS: To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). FINDINGS: Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. INTERPRETATION: In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. FUNDING: This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/prevention & control , Immunity, Cellular/drug effects , Immunization, Secondary , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Male , Middle Aged , Prevalence
8.
Nat Commun ; 12(1): 4584, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1387354

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antigens, Differentiation/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , Antigens, Differentiation/metabolism , Binding Sites , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects
10.
Biomolecules ; 11(5)2021 05 17.
Article in English | MEDLINE | ID: covidwho-1234665

ABSTRACT

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum ß-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25-50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Herpesvirus 2, Human/drug effects , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , Candida albicans/drug effects , Cell Line , Cell Survival/drug effects , Dimerization , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , SARS-CoV-2/drug effects
11.
Cell Rep ; 35(7): 109126, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1222854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , Antiviral Agents/pharmacology , Autophagosomes/immunology , Autophagy/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Exoribonucleases/immunology , HEK293 Cells , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferons/metabolism , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/pathogenicity , Vero Cells , Viral Nonstructural Proteins/immunology
12.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142436

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
COVID-19/drug therapy , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/blood , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
13.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L750-L756, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1076012

ABSTRACT

Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/prevention & control , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Adult , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Nasal Sprays , Oral Sprays , Serine Endopeptidases/metabolism , Vero Cells
14.
Nat Metab ; 3(2): 149-165, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065968

ABSTRACT

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Subject(s)
Islets of Langerhans/virology , SARS-CoV-2/growth & development , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Cells, Cultured , Diabetes Mellitus , Female , Humans , Islets of Langerhans/cytology , Islets of Langerhans/physiopathology , Male , Pancreas, Exocrine/cytology , Pancreas, Exocrine/physiopathology , Pancreas, Exocrine/virology , Pancreatic Diseases/etiology , Pancreatic Diseases/virology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Virus Internalization , Virus Replication
16.
Cell Mol Gastroenterol Hepatol ; 11(4): 935-948, 2021.
Article in English | MEDLINE | ID: covidwho-917333

ABSTRACT

BACKGROUND AND AIMS: The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS: Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS: Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS: Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , COVID-19/metabolism , Human Embryonic Stem Cells , Intestinal Mucosa , Organoids , SARS-CoV-2/physiology , Virus Replication/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Caco-2 Cells , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Human Embryonic Stem Cells/virology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
18.
mBio ; 11(5)2020 10 16.
Article in English | MEDLINE | ID: covidwho-873466

ABSTRACT

Recent evidence shows that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sensitive to interferons (IFNs). However, the most effective types of IFNs and the underlying antiviral effectors remain to be defined. Here, we show that zinc finger antiviral protein (ZAP), which preferentially targets CpG dinucleotides in viral RNA sequences, restricts SARS-CoV-2. We further demonstrate that ZAP and its cofactors KHNYN and TRIM25 are expressed in human lung cells. Type I, II, and III IFNs all strongly inhibited SARS-CoV-2 and further induced ZAP expression. Comprehensive sequence analyses revealed that SARS-CoV-2 and its closest relatives from horseshoe bats showed the strongest CpG suppression among all known human and bat coronaviruses, respectively. Nevertheless, endogenous ZAP expression restricted SARS-CoV-2 replication in human lung cells, particularly upon treatment with IFN-α or IFN-γ. Both the long and the short isoforms of human ZAP reduced SARS-CoV-2 RNA expression levels, but the former did so with greater efficiency. Finally, we show that the ability to restrict SARS-CoV-2 is conserved in ZAP orthologues of the reservoir bat and potential intermediate pangolin hosts of human coronaviruses. Altogether, our results show that ZAP is an important effector of the innate response against SARS-CoV-2, although this pandemic pathogen emerged from zoonosis of a coronavirus that was preadapted to the low-CpG environment in humans.IMPORTANCE Although interferons inhibit SARS-CoV-2 and have been evaluated for treatment of coronavirus disease 2019 (COVID-19), the most effective types and antiviral effectors remain to be defined. Here, we show that IFN-γ is particularly potent in restricting SARS-CoV-2 and in inducing expression of the antiviral factor ZAP in human lung cells. Knockdown experiments revealed that endogenous ZAP significantly restricts SARS-CoV-2. We further show that CpG dinucleotides which are specifically targeted by ZAP are strongly suppressed in the SARS-CoV-2 genome and that the two closest horseshoe bat relatives of SARS-CoV-2 show the lowest genomic CpG content of all coronavirus sequences available from this reservoir host. Nonetheless, both the short and long isoforms of human ZAP reduced SARS-CoV-2 RNA levels, and this activity was conserved in horseshoe bat and pangolin ZAP orthologues. Our findings indicating that type II interferon is particularly efficient against SARS-CoV-2 and that ZAP restricts this pandemic viral pathogen might promote the development of effective immune therapies against COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , CpG Islands , Pneumonia, Viral/virology , RNA-Binding Proteins/metabolism , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Cell Line , Coronavirus/classification , Coronavirus/genetics , Coronavirus/physiology , Gene Expression/drug effects , Genome, Viral , Humans , Interferons/pharmacology , Pandemics , Phylogeny , Protein Isoforms , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , SARS-CoV-2 , Virus Replication/drug effects
20.
J Infect Dis ; 222(8): 1289-1292, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-772684

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early coronavirus disease 2019, thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Mouthwashes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Saliva/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL