ABSTRACT
The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets. A new priority is the investigation of the relationship between social determinants of health (SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis. The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.
ABSTRACT
AIMS: We developed an international registry to examine cardiovascular complications of COVID-19. METHODS: A REDCap form was created in March 2020 at Mayo Clinic in collaboration with the International Society of Cardiomyopathy, Myocarditis and Heart Failure (ISCMF) and data were entered from April 2020 through April 2021. RESULTS: Of the 696 patients in the COVID-19 Registry, 411 (59.2%) were male and 283 (40.8%) were female, with a sex ratio of 1.5:1 male to female. In total, 95.5% of the patients were from Japan. The average age was 52 years with 31.5% being >65 years of age. COVID-19 patients with a history of cardiovascular disease (CVD) had more pre-existing conditions including type II diabetes (p < 0.0001), cancer (p = 0.0003), obesity (p = 0.001), and kidney disease (p = 0.001). They also had a greater mortality of 10.1% compared to 1.7% in those without a history of CVD (p < 0.0001). The most common cardiovascular conditions in patients with a history of CVD were hypertension (33.7%), stroke (5.7%) and arrhythmias (5.1%). We found that troponin T, troponin I, brain natriuretic peptide (BNP), N-terminal pro-BNP (NT-proBNP), C-reactive protein (CRP), IL-6 and lambda immunoglobulin free light chains (Ig FLC) were elevated above reference levels in patients with COVID-19. Myocarditis is known to occur mainly in adults under the age of 50, and when we examined biomarkers in patients that were ≤50 years of age and had no history of CVD we found that a majority of patients had elevated levels of troponin T (71.4%), IL-6 (59.5%), creatine kinase/CK-MB (57.1%), D-dimer (57.8%), kappa Ig FLC (75.0%), and lambda Ig FLC (71.4%) suggesting myocardial injury and possible myocarditis. CONCLUSIONS: We report the first findings to our knowledge of cardiovascular complications from COVID-19 in the first year of the pandemic in a predominantly Japanese population. Mortality was increased by a history of CVD and pre-existing conditions including type II diabetes, cancer, obesity, and kidney disease. Our findings indicate that even in cases where no abnormalities are found in ECG or ultrasound cardiography that myocardial damage may occur, and cardiovascular and inflammatory biomarkers may be useful for the diagnosis.
ABSTRACT
Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area.
ABSTRACT
Myocarditis remains a clinical challenge in pediatrics. Originally, it was recognized at autopsy before the application of endomyocardial biopsy, which led to a histopathology-based diagnosis such as in the Dallas criteria. Given the invasive and low-sensitivity nature of endomyocardial biopsy, its diagnostic focus shifted to a reliance on clinical suspicion. With the advances of cardiac magnetic resonance, an examination of the whole heart in vivo has gained acceptance in the pursuit of a diagnosis of myocarditis. The presentation may vary from minimal symptoms to heart failure, life-threatening arrhythmias, or cardiogenic shock. Outcomes span full resolution to chronic heart failure and the need for heart transplantation with inadequate clues to predict the disease trajectory. The American Heart Association commissioned this writing group to explore the current knowledge and management within the field of pediatric myocarditis. This statement highlights advances in our understanding of the immunopathogenesis, new and shifting dominant pathogeneses, modern laboratory testing, and use of mechanical circulatory support, with a special emphasis on innovations in cardiac magnetic resonance imaging. Despite these strides forward, we struggle without a universally accepted definition of myocarditis, which impedes progress in disease-targeted therapy.
Subject(s)
Myocarditis/diagnosis , Myocarditis/therapy , Animals , Biopsy , Child , Clinical Decision-Making , Combined Modality Therapy , Disease Management , Disease Models, Animal , Disease Susceptibility/immunology , Humans , Multimodal Imaging , Myocarditis/etiology , Myocarditis/mortality , Prognosis , Symptom Assessment , Treatment OutcomeSubject(s)
Bradycardia , Fever , Myalgia , Bradycardia/diagnosis , Bradycardia/etiology , Diagnosis, Differential , Fever/diagnosis , Fever/etiology , Humans , Male , Middle Aged , Myalgia/diagnosis , Myalgia/etiologyABSTRACT
The mechanisms of coronavirus disease-2019 (COVID-19)-related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity.
Subject(s)
COVID-19 Vaccines , Myocarditis , Vaccines, Synthetic , mRNA Vaccines , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Humans , Myocarditis/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , mRNA Vaccines/administration & dosage , mRNA Vaccines/adverse effectsSubject(s)
COVID-19 , Cardiology , Heart Failure , Humans , Myocardium , SARS-CoV-2 , Societies, MedicalABSTRACT
Importance: Myocarditis has been reported with COVID-19 but is not clearly recognized as a possible adverse event following COVID-19 vaccination. Objective: To describe myocarditis presenting after COVID-19 vaccination within the Military Health System. Design, Setting, and Participants: This retrospective case series studied patients within the US Military Health System who experienced myocarditis after COVID-19 vaccination between January and April 2021. Patients who sought care for chest pain following COVID-19 vaccination and were subsequently diagnosed with clinical myocarditis were included. Exposure: Receipt of a messenger RNA (mRNA) COVID-19 vaccine between January 1 and April 30, 2021. Main Outcomes and Measures: Clinical diagnosis of myocarditis after COVID-19 vaccination in the absence of other identified causes. Results: A total of 23 male patients (22 currently serving in the military and 1 retiree; median [range] age, 25 [20-51] years) presented with acute onset of marked chest pain within 4 days after receipt of an mRNA COVID-19 vaccine. All military members were previously healthy with a high level of fitness. Seven received the BNT162b2-mRNA vaccine and 16 received the mRNA-1273 vaccine. A total of 20 patients had symptom onset following the second dose of an appropriately spaced 2-dose series. All patients had significantly elevated cardiac troponin levels. Among 8 patients who underwent cardiac magnetic resonance imaging within the acute phase of illness, all had findings consistent with the clinical diagnosis of myocarditis. Additional testing did not identify other etiologies for myocarditis, including acute COVID-19 and other infections, ischemic injury, or underlying autoimmune conditions. All patients received brief supportive care and were recovered or recovering at the time of this report. The military administered more than 2.8 million doses of mRNA COVID-19 vaccine in this period. While the observed number of myocarditis cases was small, the number was higher than expected among male military members after a second vaccine dose. Conclusions and Relevance: In this case series, myocarditis occurred in previously healthy military patients with similar clinical presentations following receipt of an mRNA COVID-19 vaccine. Further surveillance and evaluation of this adverse event following immunization is warranted. Potential for rare vaccine-related adverse events must be considered in the context of the well-established risk of morbidity, including cardiac injury, following COVID-19 infection.
Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Military Personnel/statistics & numerical data , Myocarditis/etiology , Vaccination/adverse effects , 2019-nCoV Vaccine mRNA-1273 , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cardiac Imaging Techniques/methods , Chest Pain/etiology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Military Health Services/standards , Myocarditis/diagnosis , Myocarditis/epidemiology , Retrospective Studies , SARS-CoV-2/genetics , Troponin/blood , United States/epidemiology , Vaccination/statistics & numerical dataSubject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Myocarditis , SARS-CoV-2/metabolism , Vaccination/adverse effects , 2019-nCoV Vaccine mRNA-1273 , Adult , BNT162 Vaccine , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Humans , Male , Middle Aged , Myocarditis/blood , Myocarditis/chemically induced , Myocarditis/diagnostic imaging , Myocarditis/physiopathologyABSTRACT
CONTEXT: Myocarditis is a known cause of death in athletes. As we consider clearance of athletes to participate in sports during the COVID-19 pandemic, we offer a brief review of the myocardial effects of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) through the lens of what is known about myocarditis and exercise. All athletes should be queried about any recent illness suspicious for COVID-19 prior to sports participation. EVIDENCE ACQUISITION: The PubMed database was evaluated through 2020, with the following keywords: myocarditis, COVID-19, SARS-CoV-2, cardiac, and athletes. Selected articles identified through the primary search, along with position statements from around the world, and the relevant references from those articles, were reviewed for pertinent clinical information regarding the identification, evaluation, risk stratification, and management of myocarditis in patients, including athletes, with and without SARS-CoV-2. STUDY DESIGN: Systematic review. LEVEL OF EVIDENCE: Level 3. RESULTS: Since myocarditis can present with a variety of symptoms, and can be asymptomatic, the sports medicine physician needs to have a heightened awareness of athletes who may have had COVID-19 and be at risk for myocarditis and should have a low threshold to obtain further cardiovascular testing. Symptomatic athletes with SARS-CoV-2 may require cardiac evaluation including an electrocardiogram and possibly an echocardiogram. Athletes with cardiomyopathy may benefit from cardiac magnetic resonance imaging in the recovery phase and, rarely, endocardial biopsy. CONCLUSION: Myocarditis is a known cause of sudden cardiac death in athletes. The currently reported rates of cardiac involvement of COVID-19 makes myocarditis a risk, and physicians who clear athletes for participation in sport as well as sideline personnel should be versed with the diagnosis, management, and clearance of athletes with suspected myocarditis. Given the potentially increased risk of arrhythmias, sideline personnel should practice their emergency action plans and be comfortable using an automated external defibrillator.
Subject(s)
Athletes , COVID-19/complications , Myocarditis/complications , Myocarditis/virology , Death, Sudden, Cardiac/etiology , Exercise , Humans , Myocarditis/diagnosis , Myocarditis/diagnostic imaging , Pandemics , Return to Sport , SARS-CoV-2ABSTRACT
Fulminant myocarditis (FM) is a form of acute myocardial inflammation leading to rapid-onset hemodynamic instability due to cardiogenic shock or life-threatening arrhythmias. As highlighted by recent registries, FM is associated with high rates of death and heart transplantation, regardless of the underlying histology. Because of a paucity of evidence-based management strategies exists for this disease, an International workshop on FM was held in Wuhan, China, in October 2019, in order to share knowledge on the disease and identify areas of consensus. The present report highlights both agreements and controversies in FM management across the world, focusing the attention on areas of opportunity, FM definition, the use of endomyocardial biopsy and viral identification on heart specimens, treatment algorithms including immunosuppression and the timing of circulatory support escalation. This report incorporates the most recent recommendations from national and international professional societies. Main areas of interest and aims of future prospective observational registries and randomized controlled trials were finally identified and suggested.
Subject(s)
COVID-19/epidemiology , Disease Management , Education/methods , Internationality , Myocarditis/epidemiology , COVID-19/therapy , China/epidemiology , Education/trends , Heart Failure/epidemiology , Heart Failure/therapy , Humans , Myocarditis/therapyABSTRACT
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Subject(s)
Cardiomyopathies/physiopathology , Inflammation/physiopathology , Myocarditis/physiopathology , Virus Diseases/physiopathology , Animals , Antiviral Agents/therapeutic use , Autoimmunity/immunology , Biopsy , COVID-19/physiopathology , COVID-19/therapy , Cardiomyopathies/diagnosis , Cardiomyopathies/immunology , Cardiomyopathies/therapy , Cardiomyopathy, Dilated , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Coxsackievirus Infections/immunology , Coxsackievirus Infections/physiopathology , Coxsackievirus Infections/therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/therapy , Disease Models, Animal , Echovirus Infections/immunology , Echovirus Infections/physiopathology , Echovirus Infections/therapy , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/physiopathology , Epstein-Barr Virus Infections/therapy , Erythema Infectiosum/immunology , Erythema Infectiosum/physiopathology , Erythema Infectiosum/therapy , HIV Infections/physiopathology , Hepatitis C/immunology , Hepatitis C/physiopathology , Hepatitis C/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Inflammation/diagnosis , Inflammation/immunology , Inflammation/therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Influenza, Human/therapy , Leukocytes/immunology , Myocarditis/diagnosis , Myocarditis/immunology , Myocarditis/therapy , Myocardium/pathology , Prognosis , Roseolovirus Infections/immunology , Roseolovirus Infections/physiopathologyABSTRACT
Human coronavirus-associated myocarditis is known, and a number of coronavirus disease 19 (COVID-19)-related myocarditis cases have been reported. The pathophysiology of COVID-19-related myocarditis is thought to be a combination of direct viral injury and cardiac damage due to the host's immune response. COVID-19 myocarditis diagnosis should be guided by insights from previous coronavirus and other myocarditis experience. The clinical findings include changes in electrocardiogram and cardiac biomarkers, and impaired cardiac function. When cardiac magnetic resonance imaging is not feasible, cardiac computed tomographic angiography with delayed myocardial imaging may serve to exclude significant coronary artery disease and identify myocardial inflammatory patterns. Because many COVID-19 patients have cardiovascular comorbidities, myocardial infarction should be considered. If the diagnosis remains uncertain, an endomyocardial biopsy may help identify active cardiac infection through viral genome amplification and possibly refine the treatment risks of systemic immunosuppression. Arrhythmias are not uncommon in COVID-19 patients, but the pathophysiology is still speculative. Nevertheless, clinicians should be vigilant to provide prompt monitoring and treatment. The long-term impact of COVID-19 myocarditis, including the majority of mild cases, remains unknown.
Subject(s)
Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/virology , Betacoronavirus , Coronavirus Infections/complications , Myocarditis/diagnosis , Myocarditis/virology , Pneumonia, Viral/complications , Arrhythmias, Cardiac/therapy , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Humans , Myocarditis/therapy , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , SARS-CoV-2ABSTRACT
Coronavirus disease 2019 (COVID-19) is a rapidly expanding global pandemic caused by severe acute respiratory syndrome coronavirus 2, resulting in significant morbidity and mortality. A substantial minority of patients hospitalized develop an acute COVID-19 cardiovascular syndrome, which can manifest with a variety of clinical presentations but often presents as an acute cardiac injury with cardiomyopathy, ventricular arrhythmias, and hemodynamic instability in the absence of obstructive coronary artery disease. The cause of this injury is uncertain but is suspected to be related to myocarditis, microvascular injury, systemic cytokine-mediated injury, or stress-related cardiomyopathy. Although histologically unproven, severe acute respiratory syndrome coronavirus 2 has the potential to directly replicate within cardiomyocytes and pericytes, leading to viral myocarditis. Systemically elevated cytokines are also known to be cardiotoxic and have the potential to result in profound myocardial injury. Prior experience with severe acute respiratory syndrome coronavirus 1 has helped expedite the evaluation of several promising therapies, including antiviral agents, interleukin-6 inhibitors, and convalescent serum. Management of acute COVID-19 cardiovascular syndrome should involve a multidisciplinary team including intensive care specialists, infectious disease specialists, and cardiologists. Priorities for managing acute COVID-19 cardiovascular syndrome include balancing the goals of minimizing healthcare staff exposure for testing that will not change clinical management with early recognition of the syndrome at a time point at which intervention may be most effective. This article aims to review the best available data on acute COVID-19 cardiovascular syndrome epidemiology, pathogenesis, diagnosis, and treatment. From these data, we propose a surveillance, diagnostic, and management strategy that balances potential patient risks and healthcare staff exposure with improvement in meaningful clinical outcomes.