Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
NPJ Vaccines ; 8(1): 68, 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2314127


Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.

Front Immunol ; 13: 948431, 2022.
Article in English | MEDLINE | ID: covidwho-2022730


Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.

COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Horses , Humans , Immunization, Passive , Melphalan , Mice , Pandemics , SARS-CoV-2/genetics , gamma-Globulins
mSphere ; 7(4): e0024322, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1992945


The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.

COVID-19 , Vaccines, Virus-Like Particle , Alum Compounds , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Emulsions , Hepatitis B Surface Antigens/genetics , Humans , Melphalan , Mice , Mice, Inbred BALB C , Pandemics , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Squalene , Vaccines, Synthetic , Water , gamma-Globulins , mRNA Vaccines
NPJ Vaccines ; 7(1): 36, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1740442


SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.