Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Crit Care ; 25(1): 431, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1854857

ABSTRACT

BACKGROUND: We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5-15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients. METHODS: Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54-67] years, PaO2/FiO2 113 [79-158] mmHg and PEEP 10 [10-10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected. RESULTS: At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial-venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP. CONCLUSIONS: In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury , COVID-19/diagnosis , Critical Care , Humans , Hypoxia , Middle Aged , Oxygen/therapeutic use , SARS-CoV-2 , Ventilator-Induced Lung Injury/diagnostic imaging
2.
J Pers Med ; 12(4)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1785789

ABSTRACT

The 2020 pandemic for coronavirus SARS-CoV-2 infection has required strict measures for virus spreading reduction, including stay-at-home orders. To explore gender differences in mental health status after the first wave of the pandemic and in teleworking, we analyzed the frequency and distribution of emotions and coping strategies for facing the pandemic stratified by gender using data from an online survey conducted at the University of Salerno, Italy, between 11 May and 10 June 2020. The online questionnaire included 31 items on demographics, teleworking, COVID-19 emergency, and gender-based violence, with multiple-choice answers for some questions. Females felt significantly sadder (p = 0.0019), lonelier (p = 0.0058), more fearful (p = 0.0003), and more insecure (p = 0.0129) than males, experienced more sleep disorders (p = 0.0030), and were more likely to sanitize surfaces compared to males (p < 0.0001). Our results show gender differences in awareness and concerns about the COVID-19 pandemic that differently influenced mood, as females were more frightened and worried than males.

3.
J Clin Med ; 11(8)2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1785776

ABSTRACT

Our aim was to investigate the distribution of acid-base disorders in patients with COVID-19 ARDS using both the Henderson-Hasselbalch and Stewart's approach and to explore if hypoxemia can influence acid-base disorders. COVID-19 ARDS patients, within the first 48 h of the need for a non-invasive respiratory support, were retrospectively enrolled. Respiratory support was provided by helmet continuous positive airway pressure (CPAP) or by non-invasive ventilation. One hundred and four patients were enrolled, 84% treated with CPAP and 16% with non-invasive ventilation. Using the Henderson-Hasselbalch approach, 40% and 32% of patients presented respiratory and metabolic alkalosis, respectively; 13% did not present acid-base disorders. Using Stewart's approach, 43% and 33% had a respiratory and metabolic alkalosis, respectively; 12% of patients had a mixed disorder characterized by normal pH with a lower SID. The severe hypoxemic and moderate hypoxemic group presented similar frequencies of respiratory and metabolic alkalosis. The most frequent acid-base disorders were respiratory and metabolic alkalosis using both the Henderson-Hasselbalch and Stewart's approach. Stewart's approach detected mixed disorders with a normal pH probably generated by the combined effect of strong ions and weak acids. The impairment of oxygenation did not affect acid-base disorders.

4.
Biomedicines ; 10(3)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753434

ABSTRACT

The emergence of SARS-CoV-2 and its related disease caused by coronavirus (COVID-19) has posed a huge threat to the global population, with millions of deaths and the creation of enormous social and healthcare pressure. Several studies have shown that besides respiratory illness, other organs may be damaged as well, including the heart, kidneys, and brain. Current evidence reports a high frequency of neurological manifestations in COVID-19, with significant prognostic implications. Importantly, emerging literature is showing that the virus may spread to the central nervous system through neuronal routes, hitting the brainstem and cardiorespiratory centers, potentially exacerbating the respiratory illness. In this systematic review, we searched public databases for all available evidence and discuss current clinical and pre-clinical data on the relationship between the lung and brain during COVID-19. Acknowledging the involvement of these primordial brain areas in the pathogenesis of the disease may fuel research on the topic and allow the development of new therapeutic strategies.

6.
Ann Intensive Care ; 11(1): 179, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1582008

ABSTRACT

BACKGROUND: The use of awake prone position concomitant to non-invasive mechanical ventilation in acute respiratory distress syndrome (ARDS) secondary to COVID-19 has shown to improve gas exchange, whereas its effect on the work of breathing remain unclear. The objective of this study was to evaluate the effects of awake prone position during helmet continuous positive airway pressure (CPAP) ventilation on inspiratory effort, gas exchange and comfort of breathing. METHODS: Forty consecutive patients presenting with ARDS due to COVID-19 were prospectively enrolled. Gas exchange, esophageal pressure swing (ΔPes), dynamic transpulmonary pressure (dTPP), modified pressure time product (mPTP), work of breathing (WOB) and comfort of breathing, were recorded on supine position and after 3 h on prone position. RESULTS: The median applied PEEP with helmet CPAP was 10 [8-10] cmH2O. The PaO2/FiO2 was higher in prone compared to supine position (Supine: 166 [136-224] mmHg, Prone: 314 [232-398] mmHg, p < 0.001). Respiratory rate and minute ventilation decreased from supine to prone position from 20 [17-24] to 17 [15-19] b/min (p < 0.001) and from 8.6 [7.3-10.6] to 7.7 [6.6-8.6] L/min (p < 0.001), respectively. Prone position did not reduce ΔPes (Supine: - 7 [- 9 to - 5] cmH2O, Prone: - 6 [- 9 to - 5] cmH2O, p = 0.31) and dTPP (Supine: 17 [14-19] cmH2O, Prone: 16 [14-18] cmH2O, p = 0.34). Conversely, mPTP and WOB decreased from 152 [104-197] to 118 [90-150] cmH2O/min (p < 0.001) and from 146 [120-185] to 114 [95-151] cmH2O L/min (p < 0.001), respectively. Twenty-six (65%) patients experienced a reduction in WOB of more than 10%. The overall sensation of dyspnea was lower in prone position (p = 0.005). CONCLUSIONS: Awake prone position with helmet CPAP enables a reduction in the work of breathing and an improvement in oxygenation in COVID-19-associated ARDS.

7.
J Clin Med ; 10(22)2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1534114

ABSTRACT

The best noninvasive respiratory strategy in patients with Coronavirus Disease 2019 (COVID-19) pneumonia is still discussed. We aimed at assessing the rate of endotracheal intubation (ETI) in patients treated with continuous positive airway pressure (CPAP) and noninvasive ventilation (NIV) if CPAP failed. Secondary outcomes were in-hospital mortality and in-hospital length of stay (LOS). A retrospective, observational, multicenter study was conducted in intermediate-high dependency respiratory units of two Italian university hospitals. Consecutive patients with COVID-19 treated with CPAP were enrolled. Thoraco-abdominal asynchrony or hemodynamic instability led to ETI. Patients showing SpO2 ≤ 94%, respiratory rate ≥ 30 bpm or accessory muscle activation on CPAP received NIV. Respiratory distress and desaturation despite NIV eventually led to ETI. 156 patients were included. The overall rate of ETI was 30%, mortality 18% and median LOS 24 (17-32) days. Among patients that failed CPAP (n = 63), 28% were intubated, while the remaining 72% received NIV, of which 65% were intubated. Patients intubated after CPAP showed lower baseline PaO2/FiO2, lower lymphocyte counts and higher D-dimer values compared with patients intubated after CPAP + NIV. Mortality was 22% with CPAP + ETI, and 20% with CPAP + NIV + ETI. In the case of CPAP failure, a NIV trial appears feasible, does not deteriorate respiratory status and may reduce the need for ETI in COVID-19 patients.

8.
Journal of the Neurological Sciences ; 429:N.PAG-N.PAG, 2021.
Article in English | Academic Search Complete | ID: covidwho-1461507
10.
Intensive Care Med ; 47(10): 1130-1139, 2021 10.
Article in English | MEDLINE | ID: covidwho-1412084

ABSTRACT

PURPOSE: We investigated if the stress applied to the lung during non-invasive respiratory support may contribute to the coronavirus disease 2019 (COVID-19) progression. METHODS: Single-center, prospective, cohort study of 140 consecutive COVID-19 pneumonia patients treated in high-dependency unit with continuous positive airway pressure (n = 131) or non-invasive ventilation (n = 9). We measured quantitative lung computed tomography, esophageal pressure swings and total lung stress. RESULTS: Patients were divided in five subgroups based on their baseline PaO2/FiO2 (day 1): non-CARDS (median PaO2/FiO2 361 mmHg, IQR [323-379]), mild (224 mmHg [211-249]), mild-moderate (173 mmHg [164-185]), moderate-severe (126 mmHg [114-138]) and severe (88 mmHg [86-99], p < 0.001). Each subgroup had similar median lung weight: 1215 g [1083-1294], 1153 [888-1321], 968 [858-1253], 1060 [869-1269], and 1127 [937-1193] (p = 0.37). They also had similar non-aerated tissue fraction: 10.4% [5.9-13.7], 9.6 [7.1-15.8], 9.4 [5.8-16.7], 8.4 [6.7-12.3] and 9.4 [5.9-13.8], respectively (p = 0.85). Treatment failure of CPAP/NIV occurred in 34 patients (24.3%). Only three variables, at day one, distinguished patients with negative outcome: PaO2/FiO2 ratio (OR 0.99 [0.98-0.99], p = 0.02), esophageal pressure swing (OR 1.13 [1.01-1.27], p = 0.032) and total stress (OR 1.17 [1.06-1.31], p = 0.004). When these three variables were evaluated together in a multivariate logistic regression analysis, only the total stress was independently associated with negative outcome (OR 1.16 [1.01-1.33], p = 0.032). CONCLUSIONS: In early COVID-19 pneumonia, hypoxemia is not linked to computed tomography (CT) pathoanatomy, differently from typical ARDS. High lung stress was independently associated with the failure of non-invasive respiratory support.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lung/diagnostic imaging , Prospective Studies , SARS-CoV-2
11.
Antioxidants (Basel) ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1408379

ABSTRACT

In patients affected by Acute Respiratory Distress Syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD) and Coronavirus Disease 2019 (COVID-19), unclear mechanisms negatively interfere with the hematopoietic response to hypoxia. Although stimulated by physiological hypoxia, pulmonary hypoxic patients usually develop anemia, which may ultimately complicate the outcome. To characterize this non-adaptive response, we dissected the interplay among the redox state, iron regulation, and inflammation in patients challenged by either acute (ARDS and COVID-19) or chronic (COPD) hypoxia. To this purpose, we evaluated a panel of redox state biomarkers that may integrate the routine iron metabolism assays to monitor the patients' inflammatory and oxidative state. We measured redox and hematopoietic regulators in 20 ARDS patients, 20 ambulatory COPD patients, 9 COVID-19 ARDS-like patients, and 10 age-matched non-hypoxic healthy volunteers (controls). All the examined pathological conditions induced hypoxia, with ARDS and COVID-19 depressing the hematopoietic response without remarkable effects on erythropoietin. Free iron was higher than the controls in all patients, with higher levels of hepcidin and soluble transferrin receptor in ARDS and COVID-19. All markers of the redox state and antioxidant barrier were overexpressed in ARDS and COVID-19. However, glutathionyl hemoglobin, a candidate marker for the redox imbalance, was especially low in ARDS, despite depressed levels of glutathione being present in all patients. Although iron regulation was dysfunctional in all groups, the depressed antioxidant barrier in ARDS, and to a lesser extent in COVID-19, might induce greater inflammatory responses with consequent anemia.

12.
Neurol Sci ; 42(12): 4893-4898, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1391890

ABSTRACT

INTRODUCTION: Neurological complications of SARS-CoV-2 disease have received growing attention, but only few studies have described to date clinical and neurophysiological findings in COVID patients during their stay in intensive care units (ICUs). Here, we neurophysiologically assessed the presence of either critical illness neuropathy (CIP) or myopathy (CIM) in ICU patients. MATERIALS AND METHODS: Patients underwent a neurophysiological assessment, including bilateral examination of the median, ulnar, deep peroneal and tibial motor nerves and of the median, ulnar, radial and sural sensory nerves. Needle electromyography (EMG) was performed for both distal and proximal muscles of the lower and upper limbs. In order to differentiate CIP from CIM, Direct Muscle Stimulation (DMS) was applied either to the deltoid or tibialis anterior muscles. Peak to peak amplitudes and onset latencies of the responses evoked by DMS (DMSamp, DMSlat) or by motor nerve stimulation (MNSamp, MNSlat) were compared. The ratio MNSamp to DMSamp (NMR) and the MNSlat to DMSlat difference (NMD: MNSlat - DMSlat) were also evaluated. RESULTS: Nerve conduction studies showed a sensory-motor polyneuropathy with axonal neurogenic pattern, as confirmed by needle EMG. Both MNSamp and NMR were significantly reduced when compared to controls (p < 0.0001), whereas MNSlat and NMD were markedly increased (p = 0.0049). CONCLUSIONS: We have described COVID patients in the ICU with critical illness neuropathy (CIP). COVID-related CIP could have implications for the functional recovery and rehabilitation strategies.


Subject(s)
COVID-19 , Muscular Diseases , Polyneuropathies , Critical Illness , Electromyography , Humans , Neural Conduction , Polyneuropathies/complications , SARS-CoV-2
13.
Minerva Anestesiol ; 87(11): 1271-1272, 2021 11.
Article in English | MEDLINE | ID: covidwho-1244404
14.
Minerva Anestesiol ; 87(8): 915-926, 2021 08.
Article in English | MEDLINE | ID: covidwho-1244403

ABSTRACT

INTRODUCTION: To date, a shared international consensus on treatment of Coronavirus disease 2019 (COVID-19) with invasive or non-invasive respiratory support is lacking. Patients' management and outcomes, especially in severe and critical cases, can vary depending on regional standard operating procedures and local guidance. EVIDENCE ACQUISITION: Rapid review methodology was applied to include all the studies published on PubMed and Embase between December 15th, 2019 and February 28th, 2021, reporting in-hospital and respiratory support-related mortality in adult patients hospitalized with COVID-19 that underwent either continuous positive airway pressure (CPAP), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV). Only English language studies with ≥100 patients and reporting data on respiratory failure were included. Data on comorbidities, ventilatory parameters and hospital-related complications were registered. EVIDENCE SYNTHESIS: Fifty-two studies (287,359 patients; 57.5% males, mean age 64 years, range 24-98 years) from 17 different countries were included in the final analysis. 33.3% of patients were hospitalized in intensive care units. 44.2% had hypertension, 26.1% had diabetes, and 7.1% a chronic respiratory disease. 55% of patients underwent respiratory support (36% IMV, 62% NIV and 2% CPAP). Without considering a study with the highest number of patients treated with NIV (N.=96,729), prevalence of NIV and CPAP use was 12.5% and 13.5% respectively. Globally, invasive and non-invasive approaches were heterogeneously applied. In-hospital mortality was 33.7%, and IMV-related mortality was 72.6% (range: 4.3-99%). Specific mortality in patients treated with CPAP or NIV was available for 53% of studies, and was 29% (range: 7.2-100%). The median length of hospital stay was 13 days (range: 6-63). The most frequent hospital-related complication was acute kidney injury being reported in up to 55.7% of enrolled patients. CONCLUSIONS: Global employment of respiratory supports and related outcomes are very heterogeneous. The most frequent respiratory support in patients with COVID-19 pneumonia is IMV, while NIV and CPAP are less frequently and equally applied, the latter especially in Europe, while data on NIV/CPAP-related mortality is often under-reported. Integrated and comprehensive reporting is desirable and needed to construct evidence-based recommendations.


Subject(s)
COVID-19 , Noninvasive Ventilation , Pneumonia , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Young Adult
15.
J Crit Care ; 65: 1-8, 2021 10.
Article in English | MEDLINE | ID: covidwho-1240427

ABSTRACT

INTRODUCTION AND AIM: Non-invasive ventilation (NIV) and continuous positive airway pressure (CPAP) have been widely employed to treat acute respiratory failure secondary to COVID-19 pneumonia, but their role in terms of efficacy and safety are still debated. The aim of this review was to analyse mortality and intubation rates in COVID-19 patients treated with NIV/CPAP. METHODS: Rapid review methodology was applied to include all the studies published since December-2019 until November-2020 with available data on in-hospital mortality in COVID-19 patients treated with NIV or CPAP. RESULTS: 23 manuscripts were included (4776 patients, 66% males, 46% with hypertension). 46% of patients received non-invasive respiratory support, of which 48.4% with CPAP, 46% with NIV, and 4% with either CPAP or NIV. Non-invasive respiratory support failed in 47.7% of patients, of which 26.5% were intubated and 40.9% died. In-hospital mortality was higher in patients treated with NIV compared with CPAP (35.1% vs. 22.2%). Complications were under-reported, but mostly not related to CPAP/NIV treatment. CONCLUSION: CPAP and NIV appear equally and frequently applied in patients with COVID-19 pneumonia, but associated with high mortality. Robust evidence is urgently needed to confirm the clinical efficacy of non-invasive respiratory support in COVID-19-related ARDS.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Continuous Positive Airway Pressure , Female , Humans , Male , SARS-CoV-2
16.
J Neurol ; 268(12): 4486-4491, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1231904

ABSTRACT

INTRODUCTION: SARS-CoV-2 might spread through the nervous system, reaching respiratory centers in the brainstem. Because we recently reported neurophysiological brainstem reflex abnormalities in COVID-19 patients, we here neuropathologically assessed structural brainstem damage in two COVID-19 patients. MATERIALS AND METHODS: We assessed neuropathological features in two patients who died of COVID-19 and in two COVID-19 negative patients as controls. Neuronal damage and corpora amylacea (CA) numbers /mm2 were histopathologically assessed. Other features studied were the immunohistochemical expression of the SARS-CoV-2 nucleoprotein (NP) and the Iba-1 antigen for glial activation. RESULTS: Autopsies showed normal gross brainstem anatomy. Histopathological examination demonstrated increased neuronal and CA damage in Covid-19 patients' medulla oblongata. Immunohistochemistry disclosed SARS-CoV-2 NP in brainstem neurons and glial cells, and in cranial nerves. Glial elements also exhibited a widespread increase in Iba-1 expression. Sars-Co-V2 was immunohistochemically detected in the vagus nerve fibers. DISCUSSION: Neuropathologic evidence showing SARS-CoV-2 in the brainstem and medullary damage in the area of respiratory centers strongly suggests that the pathophysiology of COVID-19-related respiratory failure includes a neurogenic component. Sars-Co-V2 detection in the vagus nerve, argues for viral trafficking between brainstem and lung.


Subject(s)
Brain Stem/virology , COVID-19 , Lung/virology , Nervous System Diseases , Humans , Nervous System Diseases/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL