Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
PLoS One ; 17(3): e0266173, 2022.
Article in English | MEDLINE | ID: covidwho-1833648


Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The high incidence of COVID-19 related respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and providers with the necessary skills to treat. Traditional mass-produced ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient. However, the current emergency has energized the pursuit of alternative designs, enabling greater flexibility in supply chain, manufacturing, storage, and maintenance considerations. To achieve this, we hypothesized that using the medical gasses and flow interruption strategy would allow for a high performance, low cost, functional ventilator. A low-cost ventilator designed and built-in accordance with the Emergency Use guidance from the US Food and Drug Administration (FDA) is presented wherein pressurized medical grade gases enter the ventilator and time limited flow interruption determines the ventilator rate and tidal volume. This simple strategy obviates the need for many components needed in traditional ventilators, thereby dramatically shortening the time from storage to clinical deployment, increasing reliability, while still providing life-saving ventilatory support. The overall design philosophy and its applicability in this new crisis is described, followed by both bench top and animal testing results used to confirm the precision, safety and reliability of this low cost and novel approach to mechanical ventilation. The ventilator meets and exceeds the critical requirements included in the FDA emergency use guidelines. The ventilator has received emergency use authorization from the FDA.

COVID-19 , Respiratory Insufficiency , Animals , COVID-19/therapy , Humans , Reproducibility of Results , Respiratory Insufficiency/therapy , Ventilators, Mechanical
Curr Opin Pediatr ; 33(3): 292-293, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1258822
Curr Opin Pediatr ; 33(3): 302-310, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1211436


PURPOSE OF REVIEW: Pediatric coronavirus disease 2019 (COVID-19) respiratory disease is a distinct entity from adult illness, most notable in its milder phenotype. This review summarizes the current knowledge of the clinical patterns, cellular pathophysiology, and epidemiology of COVID-19 respiratory disease in children with specific attention toward factors that account for the maturation-related differences in disease severity. RECENT FINDINGS: Over the past 14 months, knowledge of the clinical presentation and pathophysiology of COVID-19 pneumonia has rapidly expanded. The decreased disease severity of COVID-19 pneumonia in children was an early observation. Differences in the efficiency of viral cell entry and timing of immune recognition and response between children and adults remain at the center of ongoing research. SUMMARY: The clinical spectrum of COVID-19 respiratory disease in children is well defined. The age-related differences protecting children from severe disease and death remain incompletely understood.

COVID-19 , Respiration Disorders , Respiratory Tract Diseases , Adult , Child , Humans , SARS-CoV-2 , Severity of Illness Index
Pediatr Pulmonol ; 55(8): 1859-1867, 2020 08.
Article in English | MEDLINE | ID: covidwho-597152


Unprecedented opportunities and daunting difficulties are anticipated in the future of pediatric pulmonary medicine. To address these issues and optimize pediatric pulmonary training, a group of faculty from various institutions met in 2019 and proposed specific, long-term solutions to the emerging problems in the field. Input on these ideas was then solicited more broadly from faculty with relevant expertise and from recent trainees. This proposal is a synthesis of these ideas. Pediatric pulmonology was among the first pediatric specialties to be grounded deliberately in science, requiring its fellows to demonstrate expertise in scientific inquiry (1). In the future, we will need more training in science, not less. Specifically, the scope of scientific inquiry will need to be broader. The proposal outlined below is designed to help optimize the practices of current providers and to prepare the next generation to be leaders in pediatric care in the future. We are optimistic that this can be accomplished. Our broad objectives are (a) to meet the pediatric subspecialty workforce demand by increasing interest and participation in pediatric pulmonary training; (b) to modernize training to ensure that future pediatric pulmonologists will be prepared clinically and scientifically for the future of the field; (c) to train pediatric pulmonologists who will add value in the future of pediatric healthcare, complemented by advanced practice providers and artificial intelligence systems that are well-informed to optimize quality healthcare delivery; and (d) to decrease the cost and improve the quality of care provided to children with respiratory diseases.

Pediatrics , Pulmonary Medicine , Artificial Intelligence , Child , Delivery of Health Care , Health Workforce , Humans , Pediatrics/education , Pulmonary Medicine/education