Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pediatrics ; 150(2)2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1974395

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited postauthorization safety data for the Pfizer-BioNTech coronavirus disease 2019 vaccination among children ages 5 to 11 years are available, particularly for the adverse event myocarditis, which has been detected in adolescents and young adults. We describe adverse events observed during the first 4 months of the United States coronavirus disease 2019 vaccination program in this age group. METHODS: We analyzed data from 3 United States safety monitoring systems: v-safe, a voluntary smartphone-based system that monitors reactions and health effects; the Vaccine Adverse Events Reporting System (VAERS), the national spontaneous reporting system comanaged by the Centers for Disease Control and Prevention and Food and Drug Administration; and the Vaccine Safety Datalink, an active surveillance system that monitors electronic health records for prespecified events, including myocarditis. RESULTS: Among 48 795 children ages 5 to 11 years enrolled in v-safe, most reported reactions were mild-to-moderate, most frequently reported the day after vaccination, and were more common after dose 2. VAERS received 7578 adverse event reports; 97% were nonserious. On review of 194 serious VAERS reports, 15 myocarditis cases were verified; 8 occurred in boys after dose 2 (reporting rate 2.2 per million doses). In the Vaccine Safety Datalink, no safety signals were detected in weekly sequential monitoring after administration of 726 820 doses. CONCLUSIONS: Safety findings for Pfizer-BioNTech vaccine from 3 United States monitoring systems in children ages 5 to 11 years show that most reported adverse events were mild and no safety signals were observed in active surveillance. VAERS reporting rates of myocarditis after dose 2 in this age group were substantially lower than those observed among adolescents ages 12 to 15 years.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Adverse Drug Reaction Reporting Systems , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Humans , Male , Myocarditis/etiology , United States/epidemiology , Young Adult
2.
Vaccine ; 40(26): 3705-3712, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1873317

ABSTRACT

BACKGROUND: In 2015, Tajikistan became the second country in Central Asia to introduce rotavirus vaccine into its national immunization program. Before vaccine introduction, rotavirus was estimated to cause > 40% of pediatric diarrhea hospitalizations in Tajikistan. We aimed to assess the impact of rotavirus vaccine introduction on rotavirus disease burden and estimate rotavirus vaccine effectiveness (VE). METHODS: Using surveillance data from 2013 through 2019, we examined trends in monthly hospital admissions among children < 5 years old, before and after rotavirus vaccine introduction. Poisson regression was used to quantify decreases. VE was estimated using a test-negative case control design, with data from admissions during 2017 - 2019. Immunization records were obtained from clinics. RESULTS: Among enrolled children, rotavirus positivity declined from 42% to 25% in the post-vaccine introduction period, a decrease of 41% (95% Confidence Interval [CI]: 36 - 45%). Declines were greatest in children < 12 months of age. Estimated VE of a complete course of rotavirus vaccine was 55% (95% CI: 21 - 73%) among children 5 - 59 months of age and 64% (95% CI: 36 - 80%) among children 5 - 23 months of age. VE point estimates were higher among children receiving both doses of rotavirus vaccine non-concurrently with OPV and among children receiving their first dose of rotavirus vaccine at 4 - 11 months of age, but CIs were wide and overlapping. CONCLUSIONS: Our data demonstrate that rotavirus vaccine introduction was associated with a substantial reduction in pediatric rotavirus hospitalization burden in Tajikistan, and that rotavirus vaccination is effective in Tajik children.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Child , Child, Preschool , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Hospitalization , Humans , Immunization Programs , Infant , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Vaccination , Vaccines, Attenuated
3.
Lancet Child Adolesc Health ; 6(5): 303-312, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713046

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition associated with antecedent SARS-CoV-2 infection. In the USA, reporting of MIS-C after vaccination is required under COVID-19 vaccine emergency use authorisations. We aimed to investigate reports of individuals aged 12-20 years with MIS-C after COVID-19 vaccination reported to passive surveillance systems or through clinician outreach to the US Centers for Disease Control and Prevention (CDC). METHODS: In this surveillance activity, we investigated potential cases of MIS-C after COVID-19 vaccination reported to CDC's MIS-C national surveillance system, the Vaccine Adverse Event Reporting System (co-administered by CDC and the US Food and Drug Administration), and CDC's Clinical Immunization Safety Assessment Project. A multidisciplinary team adjudicated cases by use of the CDC MIS-C definition. Any positive SARS-CoV-2 serology test satisfied case criteria; although anti-nucleocapsid antibodies indicate previous SARS-CoV-2 infection, anti-spike protein antibodies indicate either past or recent infection or COVID-19 vaccination. We describe the demographic and clinical features of cases, stratified by laboratory evidence of SARS-CoV-2 infection. To calculate the reporting rate of MIS-C, we divided the count of all individuals meeting the MIS-C case definition, and of those without evidence of SARS-CoV-2 infection, by the number of individuals aged 12-20 years in the USA who received one or more COVID-19 vaccine doses up to Aug 31, 2021, obtained from CDC national vaccine surveillance data. FINDINGS: Using surveillance results from Dec 14, 2020, to Aug 31, 2021, we identified 21 individuals with MIS-C after COVID-19 vaccination. Of these 21 individuals, median age was 16 years (range 12-20); 13 (62%) were male and eight (38%) were female. All 21 were hospitalised: 12 (57%) were admitted to an intensive care unit and all were discharged home. 15 (71%) of 21 individuals had laboratory evidence of past or recent SARS-CoV-2 infection, and six (29%) did not. As of Aug 31, 2021, 21 335 331 individuals aged 12-20 years had received one or more doses of a COVID-19 vaccine, making the overall reporting rate for MIS-C after vaccination 1·0 case per million individuals receiving one or more doses in this age group. The reporting rate in only those without evidence of SARS-CoV-2 infection was 0·3 cases per million vaccinated individuals. INTERPRETATION: Here, we describe a small number of individuals with MIS-C who had received one or more doses of a COVID-19 vaccine before illness onset; the contribution of vaccination to these illnesses is unknown. Our findings suggest that MIS-C after COVID-19 vaccination is rare. Continued reporting of potential cases and surveillance for MIS-C illnesses after COVID-19 vaccination is warranted. FUNDING: US Centers for Disease Control and Prevention.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Female , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology , United States/epidemiology , Young Adult
4.
The Lancet. Child & adolescent health ; 2022.
Article in English | EuropePMC | ID: covidwho-1695114

ABSTRACT

Background Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition associated with antecedent SARS-CoV-2 infection. In the USA, reporting of MIS-C after vaccination is required under COVID-19 vaccine emergency use authorisations. We aimed to investigate reports of individuals aged 12–20 years with MIS-C after COVID-19 vaccination reported to passive surveillance systems or through clinician outreach to the US Centers for Disease Control and Prevention (CDC). Methods In this surveillance activity, we investigated potential cases of MIS-C after COVID-19 vaccination reported to CDC's MIS-C national surveillance system, the Vaccine Adverse Event Reporting System (co-administered by CDC and the US Food and Drug Administration), and CDC's Clinical Immunization Safety Assessment Project. A multidisciplinary team adjudicated cases by use of the CDC MIS-C definition. Any positive SARS-CoV-2 serology test satisfied case criteria;although anti-nucleocapsid antibodies indicate previous SARS-CoV-2 infection, anti-spike protein antibodies indicate either past or recent infection or COVID-19 vaccination. We describe the demographic and clinical features of cases, stratified by laboratory evidence of SARS-CoV-2 infection. To calculate the reporting rate of MIS-C, we divided the count of all individuals meeting the MIS-C case definition, and of those without evidence of SARS-CoV-2 infection, by the number of individuals aged 12–20 years in the USA who received one or more COVID-19 vaccine doses up to Aug 31, 2021, obtained from CDC national vaccine surveillance data. Findings Using surveillance results from Dec 14, 2020, to Aug 31, 2021, we identified 21 individuals with MIS-C after COVID-19 vaccination. Of these 21 individuals, median age was 16 years (range 12–20);13 (62%) were male and eight (38%) were female. All 21 were hospitalised: 12 (57%) were admitted to an intensive care unit and all were discharged home. 15 (71%) of 21 individuals had laboratory evidence of past or recent SARS-CoV-2 infection, and six (29%) did not. As of Aug 31, 2021, 21 335 331 individuals aged 12–20 years had received one or more doses of a COVID-19 vaccine, making the overall reporting rate for MIS-C after vaccination 1·0 case per million individuals receiving one or more doses in this age group. The reporting rate in only those without evidence of SARS-CoV-2 infection was 0·3 cases per million vaccinated individuals. Interpretation Here, we describe a small number of individuals with MIS-C who had received one or more doses of a COVID-19 vaccine before illness onset;the contribution of vaccination to these illnesses is unknown. Our findings suggest that MIS-C after COVID-19 vaccination is rare. Continued reporting of potential cases and surveillance for MIS-C illnesses after COVID-19 vaccination is warranted. Funding US Centers for Disease Control and Prevention.

5.
Public Health Rep ; 137(1): 128-136, 2022.
Article in English | MEDLINE | ID: covidwho-1506259

ABSTRACT

OBJECTIVES: The number of SARS-CoV-2 infections is underestimated in surveillance data. Various approaches to assess the seroprevalence of antibodies to SARS-CoV-2 have different resource requirements and generalizability. We estimated the seroprevalence of antibodies to SARS-CoV-2 in Denver County, Colorado, via a cluster-sampled community survey. METHODS: We estimated the overall seroprevalence of antibodies to SARS-CoV-2 via a community seroprevalence survey in Denver County in July 2020, described patterns associated with seroprevalence, and compared results with cumulative COVID-19 incidence as reported to the health department during the same period. In addition, we compared seroprevalence as assessed with a temporally and geographically concordant convenience sample of residual clinical specimens from a commercial laboratory. RESULTS: Based on 404 specimens collected through the community survey, 8.0% (95% CI, 3.9%-15.7%) of Denver County residents had antibodies to SARS-CoV-2, an infection rate of about 7 times that of the 1.1% cumulative reported COVID-19 incidence during this period. The estimated infection-to-reported case ratio was highest among children (34.7; 95% CI, 11.1-91.2) and males (10.8; 95% CI, 5.7-19.3). Seroprevalence was highest among males of Black race or Hispanic ethnicity and was associated with previous COVID-19-compatible illness, a previous positive SARS-CoV-2 test result, and close contact with someone who had confirmed SARS-CoV-2 infection. Testing of 1598 residual clinical specimens yielded a seroprevalence of 6.8% (95% CI, 5.0%-9.2%); the difference between the 2 estimates was 1.2 percentage points (95% CI, -3.6 to 12.2 percentage points). CONCLUSIONS: Testing residual clinical specimens provided a similar seroprevalence estimate yet yielded limited insight into the local epidemiology of COVID-19 and might be less representative of the source population than a cluster-sampled community survey. Awareness of the limitations of various sampling strategies is necessary when interpreting findings from seroprevalence assessments.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , COVID-19/immunology , Child , Child, Preschool , Colorado/epidemiology , Female , Humans , Infant , Male , Middle Aged , SARS-CoV-2 , Seroepidemiologic Studies , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL