Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add filters

Document Type
Year range
1.
BMJ Open ; 12(1): e054069, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1606566

ABSTRACT

OBJECTIVE: The first COVID-19-19 epidemic wave was over the period of February-May 2020. Since 1 October 2020, Italy, as many other European countries, faced a second wave. The aim of this analysis was to compare the 28-day mortality between the two waves among COVID-19 hospitalised patients. DESIGN: Observational cohort study. Standard survival analysis was performed to compare all-cause mortality within 28 days after hospital admission in the two waves. Kaplan-Meier curves as well as Cox regression model analysis were used. The effect of wave on risk of death was shown by means of HRs with 95% CIs. A sensitivity analysis around the impact of the circulating variant as a potential unmeasured confounder was performed. SETTING: University Hospital of Modena, Italy. Patients admitted to the hospital for severe COVID-19 pneumonia during the first (22 February-31 May 2020) and second (1 October-31 December 2020) waves were included. RESULTS: During the two study periods, a total of 1472 patients with severe COVID-19 pneumonia were admitted to our hospital, 449 during the first wave and 1023 during the second. Median age was 70 years (IQR 56-80), 37% women, 49% with PaO2/FiO2 <250 mm Hg, 82% with ≥1 comorbidity, median duration of symptoms was 6 days. 28-day mortality rate was 20.0% (95% CI 16.3 to 23.7) during the first wave vs 14.2% (95% CI 12.0 to 16.3) in the second (log-rank test p value=0.03). After including key predictors of death in the multivariable Cox regression model, the data still strongly suggested a lower 28-day mortality rate in the second wave (aHR=0.64, 95% CI 0.45 to 0.90, p value=0.01). CONCLUSIONS: In our hospitalised patients with COVID-19 with severe pneumonia, the 28-day mortality appeared to be reduced by 36% during the second as compared with the first wave. Further studies are needed to identify factors that may have contributed to this improved survival.


Subject(s)
COVID-19 , Pandemics , Aged , Female , Hospital Mortality , Humans , Intensive Care Units , Italy/epidemiology , Male , SARS-CoV-2 , Tertiary Care Centers
2.
Eur J Immunol ; 51(12): 2708-3145, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1568038

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.

3.
Eur J Immunol ; 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1555185

ABSTRACT

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2 we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function, including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies. This article is protected by copyright. All rights reserved.

6.
Nat Commun ; 12(1): 4677, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387356

ABSTRACT

SARS-CoV-2 infection can affect all human beings, including pregnant women. Thus, understanding the immunological changes induced by the virus during pregnancy is nowadays of pivotal importance. Here, using peripheral blood from 14 pregnant women with asymptomatic or mild SARS-CoV-2 infection, we investigate cell proliferation and cytokine production, measure plasma levels of 62 cytokines, and perform a 38-parameter mass cytometry analysis. Our results show an increase in low density neutrophils but no lymphopenia or gross alterations of white blood cells, which display normal levels of differentiation, activation or exhaustion markers and show well preserved functionality. Meanwhile, the plasma levels of anti-inflammatory cytokines such as interleukin (IL)-1RA, IL-10 and IL-19 are increased, those of IL-17, PD-L1 and D-dimer are decreased, but IL-6 and other inflammatory molecules remain unchanged. Our profiling of antiviral immune responses may thus help develop therapeutic strategies to avoid virus-induced damages during pregnancy.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Adolescent , Adult , Asymptomatic Infections , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Case-Control Studies , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/prevention & control , Inflammation/virology , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/blood , SARS-CoV-2/isolation & purification , Young Adult
7.
Adv Healthc Mater ; 10(20): e2100955, 2021 10.
Article in English | MEDLINE | ID: covidwho-1368425

ABSTRACT

An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.


Subject(s)
Biosensing Techniques , COVID-19 , Biomarkers , Electrolytes , Humans , Inflammation/diagnosis , SARS-CoV-2 , Transistors, Electronic
8.
PLoS One ; 16(8): e0251378, 2021.
Article in English | MEDLINE | ID: covidwho-1354756

ABSTRACT

BACKGROUND: The benefit of tocilizumab on mortality and time to recovery in people with severe COVID pneumonia may depend on appropriate timing. The objective was to estimate the impact of tocilizumab administration on switching respiratory support states, mortality and time to recovery. METHODS: In an observational study, a continuous-time Markov multi-state model was used to describe the sequence of respiratory support states including: no respiratory support (NRS), oxygen therapy (OT), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV), OT in recovery, NRS in recovery. RESULTS: Two hundred seventy-one consecutive adult patients were included in the analyses contributing to 695 transitions across states. The prevalence of patients in each respiratory support state was estimated with stack probability plots, comparing people treated with and without tocilizumab since the beginning of the OT state. A positive effect of tocilizumab on the probability of moving from the invasive and non-invasive mechanical NIV/IMV state to the OT in recovery state (HR = 2.6, 95% CI = 1.2-5.2) was observed. Furthermore, a reduced risk of death was observed in patients in NIV/IMV (HR = 0.3, 95% CI = 0.1-0.7) or in OT (HR = 0.1, 95% CI = 0.0-0.8) treated with tocilizumab. CONCLUSION: To conclude, we were able to show the positive impact of tocilizumab used in different disease stages depicted by respiratory support states. The use of the multi-state Markov model allowed to harmonize the heterogeneous mortality and recovery endpoints and summarize results with stack probability plots. This approach could inform randomized clinical trials regarding tocilizumab, support disease management and hospital decision making.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Respiratory Therapy/methods , Aged , Female , Humans , Male , Markov Chains , Middle Aged , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiration, Artificial , Time Factors , Treatment Outcome
9.
Cells ; 10(7)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1285369

ABSTRACT

Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.


Subject(s)
COVID-19/pathology , Cell Death/physiology , SARS-CoV-2/pathogenicity , Apoptosis/physiology , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Humans , Necroptosis/physiology , Virus Internalization
10.
Sci Rep ; 11(1): 12716, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1275959

ABSTRACT

Monocyte Distribution Width (MDW), a new cytometric parameter correlating with cytomorphologic changes occurring upon massive monocyte activation, has recently emerged as promising early biomarker of sepsis. Similar to sepsis, monocyte/macrophage subsets are considered key mediators of the life-threatening hyper-inflammatory disorder characterizing severe COVID-19. In this study, we longitudinally analyzed MDW values in a cohort of 87 COVID-19 patients consecutively admitted to our hospital, showing significant correlations between MDW and common inflammatory markers, namely CRP (p < 0.001), fibrinogen (p < 0.001) and ferritin (p < 0.01). Moreover, high MDW values resulted to be prognostically associated with fatal outcome in COVID-19 patients (AUC = 0.76, 95% CI: 0.66-0.87, sensitivity 0.75, specificity 0.70, MDW threshold 26.4; RR = 4.91, 95% CI: 1.73-13.96; OR = 7.14, 95% CI: 2.06-24.71). This pilot study shows that MDW can be useful in the monitoring of COVID-19 patients, as this innovative hematologic biomarker is: (1) easy to obtain, (2) directly related to the activation state of a fundamental inflammatory cell subset (i.e. monocytes, pivotal in both cytokine storm and sepsis immunopathogenesis), (3) well correlated with clinical severity of COVID-19-associated inflammatory disorder, and, in turn, (4) endowed with relevant prognostic significance. Additional studies are needed to define further the clinical impact of MDW testing in the management of COVID-19 patients.


Subject(s)
COVID-19/blood , Cell Size , Monocytes/pathology , SARS-CoV-2 , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/epidemiology , COVID-19/virology , Female , Ferritins/blood , Fibrinogen/analysis , Humans , Inflammation/blood , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Patient Admission , Pilot Projects , Prognosis , Retrospective Studies , Sensitivity and Specificity , Young Adult
11.
Nat Commun ; 12(1): 2593, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223090

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is a continuous challenge worldwide, and there is an urgent need to map the landscape of immunogenic and immunodominant epitopes recognized by CD8+ T cells. Here, we analyze samples from 31 patients with COVID-19 for CD8+ T cell recognition of 500 peptide-HLA class I complexes, restricted by 10 common HLA alleles. We identify 18 CD8+ T cell recognized SARS-CoV-2 epitopes, including an epitope with immunodominant features derived from ORF1ab and restricted by HLA-A*01:01. In-depth characterization of SARS-CoV-2-specific CD8+ T cell responses of patients with acute critical and severe disease reveals high expression of NKG2A, lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining survival. SARS-CoV-2-specific CD8+ T cell responses are detectable up to 5 months after recovery from critical and severe disease, and these responses convert from dysfunctional effector to functional memory CD8+ T cells during convalescence.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Alleles , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Polyproteins/immunology , Viral Proteins/immunology
12.
Acta Otorhinolaryngol Ital ; 41(3): 197-205, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1222316

ABSTRACT

Objective: Interactions between SARS-CoV-2 and pharyngeal associated lymphoid tissue are thought to influence the manifestations of COVID-19. We aimed to determine whether a previous history of tonsillectomy, as a surrogate indicator of a dysfunctional pharyngeal associated lymphoid tissue, could predict the presentation and course of COVID-19. Methods: Multicentric cross-sectional observational study involving seven hospitals in Northern and Central Italy. Data on the clinical course and signs and symptoms of the infection were collected from 779 adults who tested positive for SARS-CoV-2, and analysed in relation to previous tonsillectomy, together with demographic and anamnestic data. Results: Patients with previous tonsillectomy showed a greater risk of fever, temperature higher than 39°C, chills and malaise. No significant differences in hospital admissions were found. Conclusions: A previous history of tonsillectomy, as a surrogate indicator of immunological dysfunction of the pharyngeal associated lymphoid tissue, could predict a more intense systemic manifestation of COVID-19. These results could provide a simple clinical marker to discriminate suspected carriers and to delineate more precise prognostic models.


Subject(s)
COVID-19 , Palatine Tonsil , Tonsillectomy/adverse effects , Adult , Aged , COVID-19/epidemiology , Cross-Sectional Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Palatine Tonsil/surgery , Pandemics , SARS-CoV-2
13.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Article in English | MEDLINE | ID: covidwho-1219780

ABSTRACT

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Subject(s)
COVID-19 , Multiple Organ Failure , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , Endothelium/physiopathology , Humans , Immunity , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Patient Acuity , Severity of Illness Index
14.
AIDS Res Hum Retroviruses ; 37(4): 283-291, 2021 04.
Article in English | MEDLINE | ID: covidwho-1207222

ABSTRACT

The aim of this study was to evaluate both positive outcomes, including reduction of respiratory support aid and duration of hospital stay, and negative ones, including mortality and a composite of invasive mechanical ventilation or death, in patients with coronavirus disease 2019 (COVID-19) pneumonia treated with or without oral darunavir/cobicistat (DRV/c, 800/150 mg/day) used in different treatment durations. The secondary objective was to evaluate the percentage of patients treated with DRV/c who were exposed to potentially severe drug-drug interactions (DDIs) and died during hospitalization. This observational retrospective study was conducted in consecutive patients with COVID-19 pneumonia admitted to a tertiary care hospital in Modena, Italy. Kaplan-Meier survival curves and Cox proportional hazards regression were used to compare patients receiving standard of care with or without DRV/c. Adjustment for key confounders was applied. Two hundred seventy-three patients (115 on DRV/c) were included, 75.8% males, mean age was 64.6 (±13.2) years. Clinical improvement was similar between the groups, depicted by respiratory aid switch (p > .05). The same was observed for duration of hospital stay [13.2 (±8.9) for DRV/c vs. 13.4 (±7.2) days for no-DRV/c, p = .9]. Patients on DRV/c had higher rates of mortality (25.2% vs. 10.1%, p < .0001. The rate of composite outcome of mechanical ventilation and death was higher in the DRV/c group (37.4% vs. 25.3%, p = .03). Multiple serious DDI associated with DRV/c were observed in the 19 patients who died. DRV/c should not be recommended as a treatment option for COVID-19 pneumonia outside clinical trials.


Subject(s)
Anti-HIV Agents/therapeutic use , COVID-19/drug therapy , Cobicistat/therapeutic use , Darunavir/therapeutic use , Adult , Anti-HIV Agents/adverse effects , COVID-19/mortality , COVID-19/virology , Cobicistat/adverse effects , Darunavir/adverse effects , Drug Combinations , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification
15.
Front Immunol ; 12: 653974, 2021.
Article in English | MEDLINE | ID: covidwho-1202332

ABSTRACT

This study discusses substantive advances in T cell proliferation analysis, with the aim to provoke a re-evaluation of the generally-held view that Ki-67 is a reliable proliferation marker per se, and to offer a more sensitive and effective method for T cell cycle analysis, with informative examples in mouse and human settings. We summarize recent experimental work from our labs showing that, by Ki-67/DNA dual staining and refined flow cytometric methods, we were able to identify T cells in the S-G2/M phases of the cell-cycle in the peripheral blood (collectively termed "T Double S" for T cells in S-phase in Sanguine: in short "TDS" cells). Without our refinement, such cells may be excluded from conventional lymphocyte analyses. Specifically, we analyzed clonal expansion of antigen-specific CD8 T cells in vaccinated mice, and demonstrated the potential of TDS cells to reflect immune dynamics in human blood samples from healthy donors, and patients with type 1 diabetes, infectious mononucleosis, and COVID-19. The Ki-67/DNA dual staining, or TDS assay, provides a reliable approach by which human peripheral blood can be used to reflect the dynamics of human lymphocytes, rather than providing mere steady-state phenotypic snapshots. The method does not require highly sophisticated "-omics" capabilities, so it should be widely-applicable to health care in diverse settings. Furthermore, our results argue that the TDS assay can provide a window on immune dynamics in extra-lymphoid tissues, a long-sought potential of peripheral blood monitoring, for example in relation to organ-specific autoimmune diseases and infections, and cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Cycle/immunology , Diabetes Mellitus, Type 1/immunology , Ki-67 Antigen/immunology , Neoplasms/immunology , SARS-CoV-2/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Humans , Mice , Neoplasms/pathology , Neoplasms/therapy
16.
PLoS One ; 16(2): e0247275, 2021.
Article in English | MEDLINE | ID: covidwho-1097208

ABSTRACT

BACKGROUND: The aim of this secondary analysis of the TESEO cohort is to identify, early in the course of treatment with tocilizumab, factors associated with the risk of progressing to mechanical ventilation and death and develop a risk score to estimate the risk of this outcome according to patients' profile. METHODS: Patients with COVID-19 severe pneumonia receiving standard of care + tocilizumab who were alive and free from mechanical ventilation at day 6 after treatment initiation were included in this retrospective, multicenter cohort study. Multivariable logistic regression models were built to identify predictors of mechanical ventilation or death by day-28 from treatment initiation and ß-coefficients were used to develop a risk score. Secondary outcome was mortality. Patients with the same inclusion criteria as the derivation cohort from 3 independent hospitals were used as validation cohort. RESULTS: 266 patients treated with tocilizumab were included. By day 28 of hospital follow-up post treatment initiation, 40 (15%) underwent mechanical ventilation or died [26 (10%)]. At multivariable analysis, sex, day-4 PaO2/FiO2 ratio, platelets and CRP were independently associated with the risk of developing the study outcomes and were used to generate the proposed risk score. The accuracy of the score in AUC was 0.80 and 0.70 in internal validation and test for the composite endpoint and 0.92 and 0.69 for death, respectively. CONCLUSIONS: Our score could assist clinicians in identifying, early after tocilizumab administration, patients who are likely to progress to mechanical ventilation or death, so that they could be selected for eventual rescue therapies.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/pathogenicity , Aged , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Multicenter Studies as Topic , Retrospective Studies , SARS-CoV-2/drug effects , Treatment Outcome
17.
AIDS Res Hum Retroviruses ; 37(4): 283-291, 2021 04.
Article in English | MEDLINE | ID: covidwho-1096474

ABSTRACT

The aim of this study was to evaluate both positive outcomes, including reduction of respiratory support aid and duration of hospital stay, and negative ones, including mortality and a composite of invasive mechanical ventilation or death, in patients with coronavirus disease 2019 (COVID-19) pneumonia treated with or without oral darunavir/cobicistat (DRV/c, 800/150 mg/day) used in different treatment durations. The secondary objective was to evaluate the percentage of patients treated with DRV/c who were exposed to potentially severe drug-drug interactions (DDIs) and died during hospitalization. This observational retrospective study was conducted in consecutive patients with COVID-19 pneumonia admitted to a tertiary care hospital in Modena, Italy. Kaplan-Meier survival curves and Cox proportional hazards regression were used to compare patients receiving standard of care with or without DRV/c. Adjustment for key confounders was applied. Two hundred seventy-three patients (115 on DRV/c) were included, 75.8% males, mean age was 64.6 (±13.2) years. Clinical improvement was similar between the groups, depicted by respiratory aid switch (p > .05). The same was observed for duration of hospital stay [13.2 (±8.9) for DRV/c vs. 13.4 (±7.2) days for no-DRV/c, p = .9]. Patients on DRV/c had higher rates of mortality (25.2% vs. 10.1%, p < .0001. The rate of composite outcome of mechanical ventilation and death was higher in the DRV/c group (37.4% vs. 25.3%, p = .03). Multiple serious DDI associated with DRV/c were observed in the 19 patients who died. DRV/c should not be recommended as a treatment option for COVID-19 pneumonia outside clinical trials.


Subject(s)
Anti-HIV Agents/therapeutic use , COVID-19/drug therapy , Cobicistat/therapeutic use , Darunavir/therapeutic use , Adult , Anti-HIV Agents/adverse effects , COVID-19/mortality , COVID-19/virology , Cobicistat/adverse effects , Darunavir/adverse effects , Drug Combinations , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification
18.
Clin Microbiol Infect ; 27(8): 1137-1144, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-996799

ABSTRACT

OBJECTIVES: Sex differences in COVID-19 severity and mortality have been described. Key aims of this analysis were to compare the risk of invasive mechanical ventilation (IMV) and mortality by sex and to explore whether variation in specific biomarkers could mediate this difference. METHODS: This was a retrospective, observational cohort study among patients with severe COVID-19 pneumonia. A survival analysis was conducted to compare time to the composite endpoint of IMV or death according to sex. Interaction was formally tested to compare the risk difference by sex in sub-populations. Mediation analysis with a binary endpoint IMV or death (yes/no) by day 28 of follow-up for a number of inflammation/coagulation biomarkers in the context of counterfactual prediction was also conducted. RESULTS: Among 415 patients, 134 were females (32%) and 281 males (67%), median age 66 years (IQR 54-77). At admission, females showed a significantly less severe clinical and respiratory profiles with a higher PaO2/FiO2 (254 mmHg vs. 191 mmHg; p 0.023). By 28 days from admission, 49.2% (95% CI 39.6-58.9%) of males vs. 31.7% (17.9-45.4%) of females underwent IMV or death (log-rank p < 0.0001) and this amounted to a difference in terms of HR of 0.40 (0.26-0.63, p 0.0001). The area under the curve in C-reactive protein (CRP) over the study period appeared to explain 85% of this difference in risk by sex. DISCUSSION: Our analysis confirms a difference in the risk of COVID-19 clinical progression by sex and provides a hypothesis for potential mechanisms leading to this. Specifically, CRP showed a predominant role to mediate the difference in risk by sex.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Female , Hospitalization , Humans , Inflammation , Male , Middle Aged , Prognosis , Respiration, Artificial , Retrospective Studies , Risk Factors , Sex Factors
19.
PLoS One ; 15(11): e0239172, 2020.
Article in English | MEDLINE | ID: covidwho-922701

ABSTRACT

AIMS: The aim of this study was to estimate a 48 hour prediction of moderate to severe respiratory failure, requiring mechanical ventilation, in hospitalized patients with COVID-19 pneumonia. METHODS: This was an observational prospective study that comprised consecutive patients with COVID-19 pneumonia admitted to hospital from 21 February to 6 April 2020. The patients' medical history, demographic, epidemiologic and clinical data were collected in an electronic patient chart. The dataset was used to train predictive models using an established machine learning framework leveraging a hybrid approach where clinical expertise is applied alongside a data-driven analysis. The study outcome was the onset of moderate to severe respiratory failure defined as PaO2/FiO2 ratio <150 mmHg in at least one of two consecutive arterial blood gas analyses in the following 48 hours. Shapley Additive exPlanations values were used to quantify the positive or negative impact of each variable included in each model on the predicted outcome. RESULTS: A total of 198 patients contributed to generate 1068 usable observations which allowed to build 3 predictive models based respectively on 31-variables signs and symptoms, 39-variables laboratory biomarkers and 91-variables as a composition of the two. A fourth "boosted mixed model" included 20 variables was selected from the model 3, achieved the best predictive performance (AUC = 0.84) without worsening the FN rate. Its clinical performance was applied in a narrative case report as an example. CONCLUSION: This study developed a machine model with 84% prediction accuracy, which is able to assist clinicians in decision making process and contribute to develop new analytics to improve care at high technology readiness levels.


Subject(s)
Computer Simulation , Coronavirus Infections/complications , Machine Learning , Pneumonia, Viral/complications , Respiratory Insufficiency/diagnosis , Aged , Betacoronavirus , Blood Gas Analysis , COVID-19 , Female , Humans , Italy , Male , Middle Aged , Models, Statistical , Pandemics , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/etiology , SARS-CoV-2
20.
J Geriatr Cardiol ; 17(9): 593-596, 2020 Sep 28.
Article in English | MEDLINE | ID: covidwho-895718
SELECTION OF CITATIONS
SEARCH DETAIL
...