Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Viruses ; 15(2):294, 2023.
Article in English | MDPI | ID: covidwho-2200902

ABSTRACT

Background: Treatment guidelines recommend the tocilizumab use in patients with a CRP of >7.5 mg/dL. We aimed to estimate the causal effect of glucocorticoids + tocilizumab on mortality overall and after stratification for PaO2/FiO2 ratio and CRP levels. Methods: This was an observational cohort study of patients with severe COVID-19 pneumonia. The primary endpoint was day 28 mortality. Survival analysis was conducted to estimate the conditional and average causal effect of glucocorticoids + tocilizumab vs. glucocorticoids alone using Kaplan-Meier curves and Cox regression models with a time-varying variable for the intervention. The hypothesis of the existence of effect measure modification by CRP and PaO2/FiO2 ratio was tested by including an interaction term in the model. Results: In total, 992 patients, median age 69 years, 72.9% males, 597 (60.2%) treated with monotherapy, and 395 (31.8%), adding tocilizumab upon respiratory deterioration, were included. At BL, the two groups differed for median values of CRP (6 vs. 7 mg/dL;p < 0.001) and PaO2/FiO2 ratio (276 vs. 235 mmHg;p < 0.001). In the unadjusted analysis, the mortality was similar in the two groups, but after adjustment for key confounders, a significant effect of glucocorticoids + tocilizumab was observed (adjusted hazard ratio (aHR) = 0.59, 95% CI: 0.38-0.90). Although the study was not powered to detect interactions (p = 0.41), there was a signal for glucocorticoids + tocilizumab to have a larger effect in subsets, especially participants with high levels of CRP at intensification. Conclusions: Our data confirm that glucocorticoids + tocilizumab vs. glucocorticoids alone confers a survival benefit only in patients with a CRP > 7.5 mg/dL prior to treatment initiation and the largest effect for a CRP > 15 mg/dL. Large randomized studies are needed to establish an exact cut-off for clinical use.

2.
Ageing Res Rev ; 81: 101686, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1982579

ABSTRACT

The post-acute COVID-19 syndrome (PACS) is characterized by the persistence of fluctuating symptoms over three months from the onset of the possible or confirmed COVID-19 acute phase. Current data suggests that at least 10% of people with previously documented infection may develop PACS, and up to 50-80% of prevalence is reported among survivors after hospital discharge. This viewpoint will discuss various aspects of PACS, particularly in older adults, with a specific hypothesis to describe PACS as the expression of a modified aging trajectory induced by SARS CoV-2. This hypothesis will be argued from biological, clinical and public health view, addressing three main questions: (i) does SARS-CoV-2-induced alterations in aging trajectories play a role in PACS?; (ii) do people with PACS face immuno-metabolic derangements that lead to increased susceptibility to age-related diseases?; (iii) is it possible to restore the healthy aging trajectory followed by the individual before pre-COVID?. A particular focus will be given to the well-being of people with PACS that could be assessed by the intrinsic capacity model and support the definition of the healthy aging trajectory.


Subject(s)
COVID-19 , Aged , Aging , COVID-19/complications , COVID-19/epidemiology , Humans , Public Health , SARS-CoV-2
3.
Commun Biol ; 5(1): 590, 2022 06 16.
Article in English | MEDLINE | ID: covidwho-1960513

ABSTRACT

Aging is a major risk factor for developing severe COVID-19, but few detailed data are available concerning immunological changes after infection in aged individuals. Here we describe main immune characteristics in 31 patients with severe SARS-CoV-2 infection who were >70 years old, compared to 33 subjects <60 years of age. Differences in plasma levels of 62 cytokines, landscape of peripheral blood mononuclear cells, T cell repertoire, transcriptome of central memory CD4+ T cells, specific antibodies are reported along with features of lung macrophages. Elderly subjects have higher levels of pro-inflammatory cytokines, more circulating plasmablasts, reduced plasmatic level of anti-S and anti-RBD IgG3 antibodies, lower proportions of central memory CD4+ T cells, more immature monocytes and CD56+ pro-inflammatory monocytes, lower percentages of circulating follicular helper T cells (cTfh), antigen-specific cTfh cells with a less activated transcriptomic profile, lung resident activated macrophages that promote collagen deposition and fibrosis. Our study underlines the importance of inflammation in the response to SARS-CoV-2 and suggests that inflammaging, coupled with the inability to mount a proper anti-viral response, could exacerbate disease severity and the worst clinical outcome in old patients.


Subject(s)
COVID-19 , Aged , Cytokines , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , T Follicular Helper Cells
4.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1938841

ABSTRACT

Specific T cells are crucial to control SARS-CoV-2 infection, avoid reinfection and confer protection after vaccination. We have studied patients with severe or moderate COVID-19 pneumonia, compared to patients who recovered from a severe or moderate infection that had occurred about 4 months before the analyses. In all these subjects, we assessed the polyfunctionality of virus-specific CD4+ and CD8+ T cells by quantifying cytokine production after in vitro stimulation with different SARS-CoV-2 peptide pools covering different proteins (M, N and S). In particular, we quantified the percentage of CD4+ and CD8+ T cells simultaneously producing interferon-γ, tumor necrosis factor, interleukin (IL)-2, IL-17, granzyme B, and expressing CD107a. Recovered patients who experienced a severe disease display high proportions of antigen-specific CD4+ T cells producing Th1 and Th17 cytokines and are characterized by polyfunctional SARS-CoV-2-specific CD4+ T cells. A similar profile was found in patients experiencing a moderate form of COVID-19 pneumonia. No main differences in polyfunctionality were observed among the CD8+ T cell compartments, even if the proportion of responding cells was higher during the infection. The identification of those functional cell subsets that might influence protection can thus help in better understanding the complexity of immune response to SARS-CoV-2.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Interferon-gamma/metabolism , SARS-CoV-2
5.
Front Immunol ; 13: 886431, 2022.
Article in English | MEDLINE | ID: covidwho-1911044

ABSTRACT

Several COVID-19 convalescents suffer from the post-acute COVID-syndrome (PACS)/long COVID, with symptoms that include fatigue, dyspnea, pulmonary fibrosis, cognitive dysfunctions or even stroke. Given the scale of the worldwide infections, the long-term recovery and the integrative health-care in the nearest future, it is critical to understand the cellular and molecular mechanisms as well as possible predictors of the longitudinal post-COVID-19 responses in convalescent individuals. The immune system and T cell alterations are proposed as drivers of post-acute COVID syndrome. However, despite the number of studies on COVID-19, many of them addressed only the severe convalescents or the short-term responses. Here, we performed longitudinal studies of mild, moderate and severe COVID-19-convalescent patients, at two time points (3 and 6 months from the infection), to assess the dynamics of T cells immune landscape, integrated with patients-reported symptoms. We show that alterations among T cell subsets exhibit different, severity- and time-dependent dynamics, that in severe convalescents result in a polarization towards an exhausted/senescent state of CD4+ and CD8+ T cells and perturbances in CD4+ Tregs. In particular, CD8+ T cells exhibit a high proportion of CD57+ terminal effector cells, together with significant decrease of naïve cell population, augmented granzyme B and IFN-γ production and unresolved inflammation 6 months after infection. Mild convalescents showed increased naïve, and decreased central memory and effector memory CD4+ Treg subsets. Patients from all severity groups can be predisposed to the long COVID symptoms, and fatigue and cognitive dysfunctions are not necessarily related to exhausted/senescent state and T cell dysfunctions, as well as unresolved inflammation that was found only in severe convalescents. In conclusion, the post-COVID-19 functional remodeling of T cells could be seen as a two-step process, leading to distinct convalescent immune states at 6 months after infection. Our data imply that attenuation of the functional polarization together with blocking granzyme B and IFN-γ in CD8+ cells might influence post-COVID alterations in severe convalescents. However, either the search for long COVID predictors or any treatment to prevent PACS and further complications is mandatory in all patients with SARS-CoV-2 infection, and not only in those suffering from severe COVID-19.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , COVID-19/complications , Fatigue , Granzymes , Humans , Inflammation , SARS-CoV-2
6.
Intensive Care Med ; 48(6): 706-713, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1899124

ABSTRACT

PURPOSE: Cytomegalovirus (CMV) reactivation in immunocompetent critically ill patients is common and relates to a worsening outcome. In this large observational study, we evaluated the incidence and the risk factors associated with CMV reactivation and its effects on mortality in a large cohort of patients affected by coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). METHODS: Consecutive patients with confirmed SARS-CoV-2 infection and acute respiratory distress syndrome admitted to three ICUs from February 2020 to July 2021 were included. The patients were screened at ICU admission and once or twice per week for quantitative CMV-DNAemia in the blood. The risk factors associated with CMV blood reactivation and its association with mortality were estimated by adjusted Cox proportional hazards regression models. RESULTS: CMV blood reactivation was observed in 88 patients (20.4%) of the 431 patients studied. Simplified Acute Physiology Score (SAPS) II score (HR 1031, 95% CI 1010-1053, p = 0.006), platelet count (HR 0.0996, 95% CI 0.993-0.999, p = 0.004), invasive mechanical ventilation (HR 2611, 95% CI 1223-5571, p = 0.013) and secondary bacterial infection (HR 5041; 95% CI 2852-8911, p < 0.0001) during ICU stay were related to CMV reactivation. Hospital mortality was higher in patients with (67.0%) than in patients without (24.5%) CMV reactivation but the adjusted analysis did not confirm this association (HR 1141, 95% CI 0.757-1721, p = 0.528). CONCLUSION: The severity of illness and the occurrence of secondary bacterial infections were associated with an increased risk of CMV blood reactivation, which, however, does not seem to influence the outcome of COVID-19 ICU patients independently.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Critical Illness , Cytomegalovirus/physiology , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Humans , Intensive Care Units , Risk Factors , SARS-CoV-2
7.
Front Immunol ; 13: 842150, 2022.
Article in English | MEDLINE | ID: covidwho-1779941

ABSTRACT

Although it is now widely accepted that host inflammatory response contributes to COVID-19 immunopathogenesis, the pathways and mechanisms driving disease severity and clinical outcome remain poorly understood. In the effort to identify key soluble mediators that characterize life-threatening COVID-19, we quantified 62 cytokines, chemokines and other factors involved in inflammation and immunity in plasma samples, collected at hospital admission, from 80 hospitalized patients with severe COVID-19 disease who were stratified on the basis of clinical outcome (mechanical ventilation or death by day 28). Our data confirm that age, as well as neutrophilia, lymphocytopenia, procalcitonin, D-dimer and lactate dehydrogenase are strongly associated with the risk of fatal COVID-19. In addition, we found that cytokines related to TH2 regulations (IL-4, IL-13, IL-33), cell metabolism (lep, lep-R) and interferons (IFNα, IFNß, IFNγ) were also predictive of life-threatening COVID-19.


Subject(s)
COVID-19 , Cytokines , Chemokines , Humans , Interferons , SARS-CoV-2
8.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667193

ABSTRACT

Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.


Subject(s)
COVID-19/metabolism , Elastin/physiology , Extracellular Matrix/physiology , Animals , Elastic Tissue/metabolism , Elastin/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Traps/metabolism , Fibrillins/metabolism , Humans , Lung/pathology , Microfibrils/metabolism , Microfilament Proteins/metabolism , Neutrophils , Protein-Lysine 6-Oxidase/metabolism , SARS-CoV-2/pathogenicity , Tropoelastin/metabolism
9.
BMJ Open ; 12(1): e054069, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1606566

ABSTRACT

OBJECTIVE: The first COVID-19-19 epidemic wave was over the period of February-May 2020. Since 1 October 2020, Italy, as many other European countries, faced a second wave. The aim of this analysis was to compare the 28-day mortality between the two waves among COVID-19 hospitalised patients. DESIGN: Observational cohort study. Standard survival analysis was performed to compare all-cause mortality within 28 days after hospital admission in the two waves. Kaplan-Meier curves as well as Cox regression model analysis were used. The effect of wave on risk of death was shown by means of HRs with 95% CIs. A sensitivity analysis around the impact of the circulating variant as a potential unmeasured confounder was performed. SETTING: University Hospital of Modena, Italy. Patients admitted to the hospital for severe COVID-19 pneumonia during the first (22 February-31 May 2020) and second (1 October-31 December 2020) waves were included. RESULTS: During the two study periods, a total of 1472 patients with severe COVID-19 pneumonia were admitted to our hospital, 449 during the first wave and 1023 during the second. Median age was 70 years (IQR 56-80), 37% women, 49% with PaO2/FiO2 <250 mm Hg, 82% with ≥1 comorbidity, median duration of symptoms was 6 days. 28-day mortality rate was 20.0% (95% CI 16.3 to 23.7) during the first wave vs 14.2% (95% CI 12.0 to 16.3) in the second (log-rank test p value=0.03). After including key predictors of death in the multivariable Cox regression model, the data still strongly suggested a lower 28-day mortality rate in the second wave (aHR=0.64, 95% CI 0.45 to 0.90, p value=0.01). CONCLUSIONS: In our hospitalised patients with COVID-19 with severe pneumonia, the 28-day mortality appeared to be reduced by 36% during the second as compared with the first wave. Further studies are needed to identify factors that may have contributed to this improved survival.


Subject(s)
COVID-19 , Pandemics , Aged , Female , Hospital Mortality , Humans , Intensive Care Units , Italy/epidemiology , Male , SARS-CoV-2 , Tertiary Care Centers
10.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article in English | MEDLINE | ID: covidwho-1568038

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Subject(s)
Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
11.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1555185

ABSTRACT

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/blood , Case-Control Studies , Cohort Studies , Cytokines/blood , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Glycogen Phosphorylase, Liver Form/blood , Granulocytes/immunology , Granulocytes/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Middle Aged , Neutrophil Activation , Peroxidase/blood , Respiratory Burst , Severity of Illness Index
13.
Nat Commun ; 12(1): 4677, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387356

ABSTRACT

SARS-CoV-2 infection can affect all human beings, including pregnant women. Thus, understanding the immunological changes induced by the virus during pregnancy is nowadays of pivotal importance. Here, using peripheral blood from 14 pregnant women with asymptomatic or mild SARS-CoV-2 infection, we investigate cell proliferation and cytokine production, measure plasma levels of 62 cytokines, and perform a 38-parameter mass cytometry analysis. Our results show an increase in low density neutrophils but no lymphopenia or gross alterations of white blood cells, which display normal levels of differentiation, activation or exhaustion markers and show well preserved functionality. Meanwhile, the plasma levels of anti-inflammatory cytokines such as interleukin (IL)-1RA, IL-10 and IL-19 are increased, those of IL-17, PD-L1 and D-dimer are decreased, but IL-6 and other inflammatory molecules remain unchanged. Our profiling of antiviral immune responses may thus help develop therapeutic strategies to avoid virus-induced damages during pregnancy.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Adolescent , Adult , Asymptomatic Infections , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Case-Control Studies , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/prevention & control , Inflammation/virology , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/blood , SARS-CoV-2/isolation & purification , Young Adult
14.
Adv Healthc Mater ; 10(20): e2100955, 2021 10.
Article in English | MEDLINE | ID: covidwho-1368425

ABSTRACT

An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.


Subject(s)
Biosensing Techniques , COVID-19 , Biomarkers , Electrolytes , Humans , Inflammation/diagnosis , SARS-CoV-2 , Transistors, Electronic
15.
PLoS One ; 16(8): e0251378, 2021.
Article in English | MEDLINE | ID: covidwho-1354756

ABSTRACT

BACKGROUND: The benefit of tocilizumab on mortality and time to recovery in people with severe COVID pneumonia may depend on appropriate timing. The objective was to estimate the impact of tocilizumab administration on switching respiratory support states, mortality and time to recovery. METHODS: In an observational study, a continuous-time Markov multi-state model was used to describe the sequence of respiratory support states including: no respiratory support (NRS), oxygen therapy (OT), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV), OT in recovery, NRS in recovery. RESULTS: Two hundred seventy-one consecutive adult patients were included in the analyses contributing to 695 transitions across states. The prevalence of patients in each respiratory support state was estimated with stack probability plots, comparing people treated with and without tocilizumab since the beginning of the OT state. A positive effect of tocilizumab on the probability of moving from the invasive and non-invasive mechanical NIV/IMV state to the OT in recovery state (HR = 2.6, 95% CI = 1.2-5.2) was observed. Furthermore, a reduced risk of death was observed in patients in NIV/IMV (HR = 0.3, 95% CI = 0.1-0.7) or in OT (HR = 0.1, 95% CI = 0.0-0.8) treated with tocilizumab. CONCLUSION: To conclude, we were able to show the positive impact of tocilizumab used in different disease stages depicted by respiratory support states. The use of the multi-state Markov model allowed to harmonize the heterogeneous mortality and recovery endpoints and summarize results with stack probability plots. This approach could inform randomized clinical trials regarding tocilizumab, support disease management and hospital decision making.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Respiratory Therapy/methods , Aged , Female , Humans , Male , Markov Chains , Middle Aged , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiration, Artificial , Time Factors , Treatment Outcome
16.
Cells ; 10(7)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1285369

ABSTRACT

Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.


Subject(s)
COVID-19/pathology , Cell Death/physiology , SARS-CoV-2/pathogenicity , Apoptosis/physiology , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Humans , Necroptosis/physiology , Virus Internalization
17.
Sci Rep ; 11(1): 12716, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1275959

ABSTRACT

Monocyte Distribution Width (MDW), a new cytometric parameter correlating with cytomorphologic changes occurring upon massive monocyte activation, has recently emerged as promising early biomarker of sepsis. Similar to sepsis, monocyte/macrophage subsets are considered key mediators of the life-threatening hyper-inflammatory disorder characterizing severe COVID-19. In this study, we longitudinally analyzed MDW values in a cohort of 87 COVID-19 patients consecutively admitted to our hospital, showing significant correlations between MDW and common inflammatory markers, namely CRP (p < 0.001), fibrinogen (p < 0.001) and ferritin (p < 0.01). Moreover, high MDW values resulted to be prognostically associated with fatal outcome in COVID-19 patients (AUC = 0.76, 95% CI: 0.66-0.87, sensitivity 0.75, specificity 0.70, MDW threshold 26.4; RR = 4.91, 95% CI: 1.73-13.96; OR = 7.14, 95% CI: 2.06-24.71). This pilot study shows that MDW can be useful in the monitoring of COVID-19 patients, as this innovative hematologic biomarker is: (1) easy to obtain, (2) directly related to the activation state of a fundamental inflammatory cell subset (i.e. monocytes, pivotal in both cytokine storm and sepsis immunopathogenesis), (3) well correlated with clinical severity of COVID-19-associated inflammatory disorder, and, in turn, (4) endowed with relevant prognostic significance. Additional studies are needed to define further the clinical impact of MDW testing in the management of COVID-19 patients.


Subject(s)
COVID-19/blood , Cell Size , Monocytes/pathology , SARS-CoV-2 , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/epidemiology , COVID-19/virology , Female , Ferritins/blood , Fibrinogen/analysis , Humans , Inflammation/blood , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Patient Admission , Pilot Projects , Prognosis , Retrospective Studies , Sensitivity and Specificity , Young Adult
18.
Nat Commun ; 12(1): 2593, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223090

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is a continuous challenge worldwide, and there is an urgent need to map the landscape of immunogenic and immunodominant epitopes recognized by CD8+ T cells. Here, we analyze samples from 31 patients with COVID-19 for CD8+ T cell recognition of 500 peptide-HLA class I complexes, restricted by 10 common HLA alleles. We identify 18 CD8+ T cell recognized SARS-CoV-2 epitopes, including an epitope with immunodominant features derived from ORF1ab and restricted by HLA-A*01:01. In-depth characterization of SARS-CoV-2-specific CD8+ T cell responses of patients with acute critical and severe disease reveals high expression of NKG2A, lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining survival. SARS-CoV-2-specific CD8+ T cell responses are detectable up to 5 months after recovery from critical and severe disease, and these responses convert from dysfunctional effector to functional memory CD8+ T cells during convalescence.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Alleles , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Polyproteins/immunology , Viral Proteins/immunology
19.
Acta Otorhinolaryngol Ital ; 41(3): 197-205, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1222316

ABSTRACT

OBJECTIVE: Interactions between SARS-CoV-2 and pharyngeal associated lymphoid tissue are thought to influence the manifestations of COVID-19. We aimed to determine whether a previous history of tonsillectomy, as a surrogate indicator of a dysfunctional pharyngeal associated lymphoid tissue, could predict the presentation and course of COVID-19. METHODS: Multicentric cross-sectional observational study involving seven hospitals in Northern and Central Italy. Data on the clinical course and signs and symptoms of the infection were collected from 779 adults who tested positive for SARS-CoV-2, and analysed in relation to previous tonsillectomy, together with demographic and anamnestic data. RESULTS: Patients with previous tonsillectomy showed a greater risk of fever, temperature higher than 39°C, chills and malaise. No significant differences in hospital admissions were found. CONCLUSIONS: A previous history of tonsillectomy, as a surrogate indicator of immunological dysfunction of the pharyngeal associated lymphoid tissue, could predict a more intense systemic manifestation of COVID-19. These results could provide a simple clinical marker to discriminate suspected carriers and to delineate more precise prognostic models.


Subject(s)
COVID-19 , Palatine Tonsil , Tonsillectomy/adverse effects , Adult , Aged , COVID-19/epidemiology , Cross-Sectional Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Palatine Tonsil/surgery , Pandemics , SARS-CoV-2
20.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Article in English | MEDLINE | ID: covidwho-1219780

ABSTRACT

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Subject(s)
COVID-19 , Multiple Organ Failure , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , Endothelium/physiopathology , Humans , Immunity , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Patient Acuity , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL