Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell Reports ; : 110318, 2022.
Article in English | ScienceDirect | ID: covidwho-1616409

ABSTRACT

SARS-CoV-2 vaccines may target epitopes which reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the Receptor-Binding Domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants-of-concern with durable titers beyond six months. Single, low dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.

2.
Preprint in English | EuropePMC | ID: ppcovidwho-293006

ABSTRACT

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of anti-SARS-CoV-2 antibodies from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the antigen and subjects studied. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending on the specific antigen targeted and the disease status of the subject.

3.
J Mol Biol ; 434(2): 167332, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1492301

ABSTRACT

Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.

4.
Anal Chem ; 93(43): 14392-14400, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1475240

ABSTRACT

Understanding the glycosylation of the envelope spike (S) protein of SARS-CoV-2 is important in defining the antigenic surface of this key viral target. However, the underlying protein architecture may significantly influence glycan occupancy and processing. There is, therefore, potential for different recombinant fragments of S protein to display divergent glycosylation. Here, we show that the receptor binding domain (RBD), when expressed as a monomer, exhibits O-linked glycosylation, which is not recapitulated in the native-like soluble trimeric protein. We unambiguously assign O-linked glycosylation by homogenizing N-linked glycosylation using the enzymatic inhibitor, kifunensine, and then analyzing the resulting structures by electron-transfer higher-energy collision dissociation (EThcD) in an Orbitrap Eclipse Tribrid instrument. In the native-like trimer, we observe a single unambiguous O-linked glycan at T323, which displays very low occupancy. In contrast, several sites of O-linked glycosylation can be identified when RBD is expressed as a monomer, with T323 being almost completely occupied. We ascribe this effect to the relaxation of steric restraints arising from quaternary protein architecture. Our analytical approach has also highlighted that fragmentation ions arising from trace levels of truncated N-linked glycans can be misassigned as proximal putative O-linked glycan structures, particularly where a paucity of diagnostic fragments were obtained. Overall, we show that in matched expression systems the quaternary protein architecture limits O-linked glycosylation of the spike protein.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438095

ABSTRACT

OBJECTIVE: To determine clinical and ethnodemographic correlates of serological responses against the SARS-CoV-2 spike glycoprotein following mild-to-moderate COVID-19. DESIGN: A retrospective cohort study of healthcare workers who had self-isolated due to COVID-19. SETTING: University Hospitals Birmingham NHS Foundation Trust, UK (UHBFT). PARTICIPANTS: 956 healthcare workers were recruited by open invitation via UHBFT trust email and social media between 27 April 2020 and the 8 June 2020. INTERVENTION: Participants volunteered a venous blood sample that was tested for the presence of anti-SARS-CoV-2 spike glycoprotein antibodies. Results were interpreted in the context of the symptoms of their original illness and ethnodemographic variables. RESULTS: Using an assay that simultaneously measures the combined IgG, IgA and IgM response against the spike glycoprotein (IgGAM), the overall seroprevalence within this cohort was 46.2% (n=442/956). The seroprevalence of immunoglobulin isotypes was 36.3%, 18.7% and 8.1% for IgG, IgA and IgM, respectively. IgGAM identified serological responses in 40.6% (n=52/128) of symptomatic individuals who reported a negative SARS-CoV-2 PCR test. Increasing age, non-white ethnicity and obesity were independently associated with greater IgG antibody response against the spike glycoprotein. Self-reported fever and fatigue were associated with greater IgG and IgA responses against the spike glycoprotein. The combination of fever and/or cough and/or anosmia had a positive predictive value of 92.3% for seropositivity in self-isolating individuals a time when Wuhan strain SARS-CoV-2 was predominant. CONCLUSIONS AND RELEVANCE: Assays employing combined antibody detection demonstrate enhanced seroepidemiological sensitivity and can detect prior viral exposure even when PCR swabs have been negative. We demonstrate an association between known ethnodemographic risk factors associated with mortality from COVID-19 and the magnitude of serological responses in mild-to-moderate disease.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 , Adult , COVID-19/immunology , Female , Health Personnel , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , United Kingdom
6.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
7.
J Mol Biol ; 433(4): 166762, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1386060

ABSTRACT

The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Glycosylation , Host-Pathogen Interactions , Humans , Models, Molecular , Polysaccharides/analysis , Protein Binding
9.
PLoS Pathog ; 17(3): e1009407, 2021 03.
Article in English | MEDLINE | ID: covidwho-1338134

ABSTRACT

Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.


Subject(s)
Antibodies, Viral/immunology , HIV-1/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/immunology , Broadly Neutralizing Antibodies , Cross Reactions , HIV Infections/immunology , Humans , Influenza, Human/immunology
10.
Immunology ; 164(1): 135-147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1295026

ABSTRACT

Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven relatively straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. We systematically developed an ELISA, optimizing different antigens and amplification steps, in serum and saliva from non-hospitalized SARS-CoV-2-infected subjects. Using trimeric spike glycoprotein, rather than nucleocapsid, enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike IgG, IgA and IgM antibody responses were readily detectable in saliva from a minority of RT-PCR confirmed, non-hospitalized symptomatic individuals, and these were mostly subjects who had the highest levels of anti-spike serum antibodies. Therefore, detecting antibody responses in both saliva and serum can contribute to determining virus exposure and understanding immune responses after SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Saliva
11.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1294429

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
12.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225486

ABSTRACT

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

13.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1046538

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Macaca fascicularis , Spike Glycoprotein, Coronavirus/chemistry , Animals , Antibodies, Neutralizing , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Mice , Mice, Inbred BALB C , Models, Animal , Nanoparticles/administration & dosage , Rabbits , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , T-Lymphocytes/immunology , Viral Load
14.
Nat Genet ; 53(2): 205-214, 2021 02.
Article in English | MEDLINE | ID: covidwho-1023961

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Animals , Binding Sites , Cells, Cultured , Chlorocebus aethiops , Exons , HEK293 Cells , Humans , Interferons/immunology , Protein Binding , Protein Isoforms/genetics , RNA Splice Sites , RNA-Seq , Respiratory System/cytology , Spike Glycoprotein, Coronavirus/metabolism , Transcriptome , Up-Regulation , Vero Cells
15.
Front Plant Sci ; 11: 609207, 2020.
Article in English | MEDLINE | ID: covidwho-985806

ABSTRACT

Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.

17.
Emerg Infect Dis ; 26(12): 2970-2973, 2020 12.
Article in English | MEDLINE | ID: covidwho-792953

ABSTRACT

Dried blood spot (DBS) samples can be used for the detection of severe acute respiratory syndrome coronavirus 2 spike antibodies. DBS sampling is comparable to matched serum samples with a relative 98.1% sensitivity and 100% specificity. Thus, DBS sampling offers an alternative for population-wide serologic testing in the coronavirus pandemic.


Subject(s)
COVID-19/diagnosis , Dried Blood Spot Testing/methods , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Case-Control Studies , Dried Blood Spot Testing/economics , Humans , Predictive Value of Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
18.
Thorax ; 75(12): 1089-1094, 2020 12.
Article in English | MEDLINE | ID: covidwho-760280

ABSTRACT

OBJECTIVE: To determine the rates of asymptomatic viral carriage and seroprevalence of SARS-CoV-2 antibodies in healthcare workers. DESIGN: A cross-sectional study of asymptomatic healthcare workers undertaken on 24/25 April 2020. SETTING: University Hospitals Birmingham NHS Foundation Trust (UHBFT), UK. PARTICIPANTS: 545 asymptomatic healthcare workers were recruited while at work. Participants were invited to participate via the UHBFT social media. Exclusion criteria included current symptoms consistent with COVID-19. No potential participants were excluded. INTERVENTION: Participants volunteered a nasopharyngeal swab and a venous blood sample that were tested for SARS-CoV-2 RNA and anti-SARS-CoV-2 spike glycoprotein antibodies, respectively. Results were interpreted in the context of prior illnesses and the hospital departments in which participants worked. MAIN OUTCOME MEASURE: Proportion of participants demonstrating infection and positive SARS-CoV-2 serology. RESULTS: The point prevalence of SARS-CoV-2 viral carriage was 2.4% (n=13/545). The overall seroprevalence of SARS-CoV-2 antibodies was 24.4% (n=126/516). Participants who reported prior symptomatic illness had higher seroprevalence (37.5% vs 17.1%, χ2=21.1034, p<0.0001) and quantitatively greater antibody responses than those who had remained asymptomatic. Seroprevalence was greatest among those working in housekeeping (34.5%), acute medicine (33.3%) and general internal medicine (30.3%), with lower rates observed in participants working in intensive care (14.8%). BAME (Black, Asian and minority ethnic) ethnicity was associated with a significantly increased risk of seropositivity (OR: 1.92, 95% CI 1.14 to 3.23, p=0.01). Working on the intensive care unit was associated with a significantly lower risk of seropositivity compared with working in other areas of the hospital (OR: 0.28, 95% CI 0.09 to 0.78, p=0.02). CONCLUSIONS AND RELEVANCE: We identify differences in the occupational risk of exposure to SARS-CoV-2 between hospital departments and confirm asymptomatic seroconversion occurs in healthcare workers. Further investigation of these observations is required to inform future infection control and occupational health practices.


Subject(s)
Antibodies, Viral/blood , Asymptomatic Diseases , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Pandemics , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , RNA, Viral/analysis , SARS-CoV-2/genetics , Seroepidemiologic Studies
19.
Cell ; 183(3): 730-738.e13, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-746087

ABSTRACT

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Virus Assembly , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , Mass Spectrometry , Models, Molecular , Protein Conformation , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virus Cultivation
20.
Nat Commun ; 11(1): 2688, 2020 05 27.
Article in English | MEDLINE | ID: covidwho-432476

ABSTRACT

Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.


Subject(s)
Glycoproteins/immunology , Middle East Respiratory Syndrome Coronavirus , Polysaccharides , Spike Glycoprotein, Coronavirus/immunology , Viral Fusion Proteins/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Glycoproteins/chemistry , Glycoproteins/ultrastructure , Glycosylation , HEK293 Cells , HIV-1/immunology , HIV-1/metabolism , Humans , Immune Evasion/physiology , Lassa virus/immunology , Lassa virus/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Orthomyxoviridae/immunology , Orthomyxoviridae/metabolism , Polysaccharides/chemistry , Polysaccharides/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/ultrastructure , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...