Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biotechnol Bioeng ; 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2278552

ABSTRACT

Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.

2.
Biotechnol Bioeng ; 119(2): 657-662, 2022 02.
Article in English | MEDLINE | ID: covidwho-1516721

ABSTRACT

Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5X by alleviating protein folding stress. Removal of methanol from the production process enabled to scale up to a 1200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.

3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1397979

ABSTRACT

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Protein Engineering/methods , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Viral/immunology , Antigens, Viral , Binding Sites , COVID-19/virology , COVID-19 Vaccines/economics , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Protein Conformation , Saccharomycetales/metabolism , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL