Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
RSC advances ; 12(10):6093-6098, 2022.
Article in English | EuropePMC | ID: covidwho-1787361

ABSTRACT

Copper alloys are known for their high antimicrobial efficacy. Retrofitting high-touch surfaces in public space with solid copper components is expensive and often impractical. Directly coating copper onto these high-touch surfaces can be achieved with hot or cold spray, but the procedure is complicated and requires special equipment. This article reports on the development of sprayable copper and copper–zinc nanowire inks for antiviral surface coating applications. Our results show that copper nanowires inactivate the SARS-CoV-2 virus faster than bulk copper. And a trace amount of zinc addition has a significant effect in enhancing the virucidal effect. More importantly, these nanowire inks are sprayable. They can be easily applied on high-touch surfaces with a spray can. When combined with common chemical disinfectants, the copper-based nanowire ink spray may prolong the disinfecting effect well after application. SEM and TEM images of copper and copper–zinc nanowires that are sprayable for antiviral surface coating.

2.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1722548

ABSTRACT

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Subject(s)
COVID-19/immunology , Immunity, Innate/immunology , RNA Editing/immunology , SARS-CoV-2/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adenosine Deaminase/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Base Sequence , Binding Sites/genetics , COVID-19/genetics , COVID-19/virology , Evolution, Molecular , Gene Expression/immunology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Mutation , Protein Binding , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Nucleic Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the host–virus dependencies are vital for the identification and rational design of effective antiviral therapy. Here, we report the dominant SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) through a proteome-wide protein interaction analysis. We further demonstrate that E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. Pharmacological intervention of ACE2 SUMOylation blocks the entry of SARS-CoV-2 and viral infection-triggered immune responses. Collectively, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination can be targeted to future antiviral therapy of SARS-CoV-2.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323591

ABSTRACT

Background: Early in the epidemic of corona virus disease 2019 (COVID-19), Chinese government had recruited a portion of military healthcare workers to support the designated hospital (Wuhan Huoshenshan Hospital) to relieve the front-line workload in Wuhan, China. It was reported that the majority of the front-line medical staff (FLMS) suffered from adverse effects, but their physical and psychological health status and its relationship were still unknown. Hence, a structural equation modeling (SEM) was conducted to establish and test the latent relationship among variables. Methods: : This is a cross-sectional study. Totally 115 convenience samples of military medical staff from Xinqiao Hospital in Chongqing were enrolled during February 17 th to February 29 th , 2020. The medical staff assisting in Huoshenshan Hospital were selected as experimental group( n =55), the other medical staff were control group( n =60). Self-reported sleep status, fatigue status, resilience status and anxiety status were examined. Results: : During COVID-19, the medical staff underwent some impairments of physical and psychological health. The anxiety score of experimental group was (42.84±9.44), the fatigue score was (52.85±9.33), and the resilience score was (67.58±11.75). And the score of anxiety, fatigue, resilience of control group were (46.27±9.94), (49.33±11.20), (65.42±14.54) respectively. For experimental group, we found the different working duration and different attitude to work in Wuhan both had significant differences in fatigue scores ( P <0.05);As for resilience scores and anxiety scores, only different current perceived health status of participants showed a statistically significant difference ( P <0.05). The SEM results indicated the direct path from resilience to fatigue (β=-0.129, P =0.032) and anxiety (β=-0.026, P =0.043) were both significant, it revealed that resilience were negatively associated with the level of fatigue and anxiety, and the indirect path showed fatigue had a significant mediating effect between resilience and anxiety (β=-0.146, P =0.039) of the Huoshenshan Hospital medical staff. Conclusion: During an explosive pandemic, motivating the effect of individual’s internal resilience and making use of proper external interventions is a promising way to protect the physical and mental health of the front-line medical staff.

5.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
6.
Nature Astronomy ; 5(10):991-992, 2021.
Article in English | ProQuest Central | ID: covidwho-1500463

ABSTRACT

Held in Suzhou, Jiangsu province of China in June 2021, the conference served to unite a wide community of planetary science within China, and hopes to become one of the world’s premier planetary science conferences in the future.

7.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387195
8.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1203416

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
9.
Eur J Integr Med ; 44: 101323, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1126825

ABSTRACT

INTRODUCTION: Early in the epidemic of coronavirus disease 2019, the Chinese government recruited a proportion of healthcare workers to support the designated hospital (Huoshenshan Hospital) in Wuhan, China. The majority of front-line medical staff suffered from adverse effects, but their real health status during COVID-19 epidemic was still unknown. The aim of the study was to explore the latent relationship of the physical and mental health of front-line medical staff during this special period. METHODS: A total of 115 military medical staff were recruited between February 17th and February 29th, 2020 and asked to complete questionnaires assessing socio-demographic and clinical characteristics, self-reported sleep status, fatigue, resilience and anxiety. RESULTS: 55 medical staff worked within Intensive Care and 60 worked in Non-intensive Care, the two groups were significantly different in reported general fatigue, physical fatigue and tenacity (P<0.05). Gender, duration working in Wuhan, current perceived stress level and health status were associated with significant differences in fatigue scores (P<0.05), the current perceived health status (P<0.05) and impacted on the resilience and anxiety of participants. The structural equation modeling analysis revealed resilience was negatively associated with fatigue (ß=-0.52, P<0.01) and anxiety (ß=-0.24, P<0.01), and fatigue had a direct association with the physical burden (ß=0.65, P<0.01); Fatigue mediated the relationship between resilience and anxiety (ß=-0.305, P=0.039) as well as resilience and physical burden (ß=-0.276, P=0.02). CONCLUSION: During an explosive pandemic situation, motivating the effect of protective resilience and taking tailored interventions against fatigue are promising ways to protect the physical and mental health of the front-line medical staff.

10.
Proc Natl Acad Sci U S A ; 117(44): 27381-27387, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-867659

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drug Repositioning , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Chloroquine/pharmacology , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases , Dipyridamole/pharmacology , Humans , Hydroxychloroquine/pharmacology , Molecular Docking Simulation , Molecular Structure , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2
11.
Acta Pharm Sin B ; 10(7): 1205-1215, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-88716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) in silico, which suppressed SARS-CoV-2 replication in vitro. In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers (P < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.

SELECTION OF CITATIONS
SEARCH DETAIL