Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
China CDC Wkly ; 5(23): 511-515, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20234526

ABSTRACT

What is already known about this topic?: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, the clinical manifestations resulting from different SARS-CoV-2 variants may demonstrate significant variation. What is added by this report?: We conducted a comparative analysis of the clinical features associated with SARS-CoV-2 Omicron subvariants BF.7.14 and BA.5.2.48 infections. The results of our study indicate that there are no substantial differences in clinical manifestations, duration of illness, healthcare-seeking behaviors, or treatment between these two subvariants. What are the implications for public health practice?: Timely identification of alterations in the clinical spectrum is crucial for researchers and healthcare practitioners in order to enhance their comprehension of clinical manifestations, as well as the progression of SARS-CoV-2. Furthermore, this information is beneficial for policymakers in the process of revising and implementing appropriate countermeasures.

2.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; 13(2):120, 2023.
Article in English | ProQuest Central | ID: covidwho-2314222

ABSTRACT

Objective To identify the pathogen and track the genetic source of a cluster of cases with fever in a kindergarten in Fengtai district during the normalization of COVID-19 prevention and control in Beijing.Methods A descriptive analysis method was used to investigate this cluster of cases with fever in April 2021.Pharyngeal swabs were collected and viral nucleic acid was extracted, real-time PCR was performed to identify SARS-CoV-2 and other common respiratory virus. G gene of human metapneumovirus(hMPV) was amplified by RT-PCR and was then sequenced. BioEdit was used for G gene sequence analysis and the Neighbor-Joining model in MEGA 5. 0 software was used to construct the phylogenic tree of G gene. Results A total of 16 cases were reported in one class with the incidence of 53. 3%(16/30) during 8 days of a cluster outbreak. All pharyngeal swabs collected from 12 cases were tested SARS-CoV-2 negative, six were found to be hMPV positive by multiplex-PCR, and one was positive for both human adenovirus and hMPV. Full-length sequences of G genes were obtained from 2 strains of hMPV. Sequence analysis showed that both strains were hMPV B2 and the nucleic acid homology of G gene was 96. 73%-98. 01% with strains from Japan(LC337940, LC337935, LC1922349) in 2016 and over 98. 40%with strains from Shandong(OL625642, OL625644) in 2019, Henan MN944096 in 2019.Compared with the amino acid sequence of hMPV-B2 reference strain(AY297748), six amino acid insertions containing EKEKEK were identified between 161-166 amino acid location and N-glycosylation of G protein analysis showed that the two strains had four N-glycosylation sites. Conclusions The leading pathogen for this cluster outbreak is found to be hMPV-B2, which are highly homologous with strains from Japan, Shandong and Henan. Therefore, a non-stop surveillance of hMPV is necessary during the normalization control and prevention period for COVID-19.

3.
J Med Virol ; 95(3): e28613, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258974

ABSTRACT

Different variants of severe acute respiratory syndrome coronavirus 2 have been discovered globally. At present, the Omicron variant has been extensively circulated worldwide. There have been several outbreaks of the Omicron variant in China. Here, we investigated the epidemiologic, genetic characteristics, and origin-tracing data of the outbreaks of COVID-19 in Beijing from January to September 2022. During this time, 19 outbreaks occurred in Beijing, with the infected cases ranging from 2 to 2230. Two concern variants were detected, with eight genotypes. Based on origin tracing analysis, two outbreaks were from the cold-chain transmission and three from items contaminated by humans. Imported cases have caused other outbreaks. Our study provided a detailed analysis of Beijing's outbreaks and valuable information to control the outbreak's spread.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Beijing/epidemiology , Disease Outbreaks/prevention & control , Genomics
4.
Trop Med Infect Dis ; 7(12)2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2123858

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread widely around the world, and in-depth research on COVID-19 is necessary for biomarkers and target drug discovery. This analysis collected serum from six COVID-19-infected patients and six healthy people. The protein changes in the infected and healthy control serum samples were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography (HPLC). The differential protein signature in both groups was retrieved and analyzed by the Kyoto Encyclopedia of Gene and Genomes (KEGG), Gene ontology, COG/KOG, protein-protein interaction, and protein domain interactions tools. We shortlisted 24 differentially expressed proteins between both groups. Ten genes were significantly up-regulated in the infection group, and fourteen genes were significantly down-regulated. The GO and KEGG pathway enrichment analysis suggested that the chromosomal part and chromosome were the most enriched items. The oxytocin signaling pathway was the most enriched item of KEGG analysis. The netrin module (non-TIMP type) was the most enriched protein domain in this study. Functional analysis of S100A9, PIGR, C4B, IL-6R, IGLV3-19, IGLV3-1, and IGLV5-45 revealed that SARS-CoV-2 was closely related to immune response.

5.
Biosaf Health ; 4(4): 253-257, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2000278

ABSTRACT

At present, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, which has emerged multiple variants and brought a threat to global public health. To analyze the genomic characteristics and variations of SARS-CoV-2 imported into Beijing, we collected the respiratory tract specimens of 112 cases of coronavirus disease 2019 (COVID-19) from January to September 2021 in Beijing, China, including 40 local cases and 72 imported cases. The whole-genome sequences of the viruses were sequenced by the next-generation sequencing method. Variant markers and phylogenic features of SARS-CoV-2 were analyzed. Our results showed that in all 112 sequences, the mutations were concentrated in spike protein. D614G was found in all sequences, and mutations including L452R, T478K, P681R/H, and D950N in some cases. Furthermore, 112 sequences belonged to 23 lineages by phylogenetic analysis. B.1.1.7 (Alpha) and B.1.617.2 (Delta) lineages were dominant. Our study drew a variation image of SARS-CoV-2 and could help evaluate the potential risk of COVID-19 for pandemic preparedness and response.

6.
Viruses ; 14(7)2022 07 13.
Article in English | MEDLINE | ID: covidwho-1939015

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has lasted for two years and caused millions of infections and deaths in humans. Although the origin of SARS-CoV-2 infection in humans remains unknown, infection in animals has been frequently reported in varieties of animals all over the world. Both experimental and natural infections of SARS-CoV-2 in different animal species provide useful information on viral host range and pathogenicity. As the pandemic continues to evolve, SARS-CoV-2 infection in animals will be expanding. In this review, we summarized SARS-CoV-2 testing and infection in animals as well as SARS-CoV-2 strains and transmission in animals. Current data showed that at least 18 different animal species tested positive for SARS-CoV-2. These 18 animal species belong to pet, captive, farmed, and wild animals. Fifteen of the eighteen animal species were known to be positive for the Delta variant and ten animal species were infected with two different types of variants. Human-to-animal, animal-to-animal, and animal-to-human transmission events were suggested in different outbreaks involved in animal infection with SARS-CoV-2. Continued testing, immunization, and surveillance are warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Testing , Humans , Pandemics
7.
Biosaf Health ; 4(3): 150-153, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1797114

ABSTRACT

Omicron (B.1.1.529), the fifth variant of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was firstly identified in November 2021 in South Africa. Omicron contains far more genome mutations than any other VOCs ever found, raising significant concerns about its increased transmissibility and immune evasion. Here, we report the importation of the Omicron variant into Beijing, China, in December 2021. Full-length genome sequences of five imported strains were obtained, with their genetic features characterized. Each strain contained 57 to 61 nucleotide substitutions, 39 deletions, and 9 insertions in the genome. Thirty to thirty-two amino acid changes were found in the spike proteins of the five strains. The phylogenetic tree constructed by the maximum likelihood method showed that all five imported genomes belonged to Omicron (BA.1) (alias of B.1.1.529.1), which is leading to the current surge of coronavirus disease 2019 (COVID-19) cases worldwide. The globally increased COVID-19 cases driven by the Omicron variant pose a significant challenge to disease prevention and control in China. Continuous viral genetic surveillance and increased testing among international travellers are required to contain this highly contagious variant.

9.
J Clin Lab Anal ; 35(1): e23605, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-976975

ABSTRACT

We compared the sensitivity and specificity of four commercial coronavirus disease (COVID-19) diagnostic kits using real-time reverse transcription-polymerase chain reaction (RT-PCR). Kits I-IV approved by the State Drug Administration of China were selected, and the detection targets were ORF1ab gene and N gene. Specificity was evaluated by detecting other respiratory viruses. The sensitivity and batch effect of each kit were evaluated by testing 10-fold dilutions of RNA. Clinical application was verified by testing nasopharyngeal swab and sputum specimens from COVID-19 patients. Among the 78 cases infected by other respiratory viruses, no amplification curve was observed using these four COVID-19 RT-PCR kits. The minimum detection limits of kits I-IV were 10-6 , 10-5 , 10-5 , and 10-6 dilutions, respectively, and concentrations were 10 copies/mL (10-5 dilution) and 1 copies/mL (10-6 dilution). The sensitivities of kits I-IV detected using 142 nasopharyngeal swab specimens from COVID-19 patients were 91.55%, 81.69%, 80.28%, and 90.85%, respectively, while they were 92.68%, 85.37%, 82.93%, and 93.90%, respectively, for the 82 sputum samples. The specificity of each kit was 100.00% (77/77). The total expected detection rate using sputum samples was 88.59% (691/780) higher than 86.15% (672/780) of nasopharyngeal swabs. Comparison of nasopharyngeal swab and sputum samples from the same COVID-19 patient led to the detection of ORF1ab and N genes in 16 (100%) sputum samples; only ORF1ab and N genes were detected in 12 (75%) and 14 (87.5%) nasopharyngeal swab specimens, respectively. In conclusion, comparison of commercial COVID-19 RT-PCR kits should be performed before using a new batch of such kits in routine diagnostics.


Subject(s)
COVID-19 Testing/methods , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , China , Clinical Laboratory Techniques/methods , Humans , Nasopharynx/virology , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , Sputum/virology
10.
Clin Chem ; 66(6): 794-801, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-30705

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) has spread widely throughout the world since the end of 2019. Nucleic acid testing (NAT) has played an important role in patient diagnosis and management of COVID-19. In some circumstances, thermal inactivation at 56°C has been recommended to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) before NAT. However, this procedure could theoretically disrupt nucleic acid integrity of this single-stranded RNA virus and cause false negatives in real-time polymerase chain reaction (RT-PCR) tests. METHODS: We investigated whether thermal inactivation could affect the results of viral NAT. We examined the effects of thermal inactivation on the quantitative RT-PCR results of SARS-CoV-2, particularly with regard to the rates of false-negative results for specimens carrying low viral loads. We additionally investigated the effects of different specimen types, sample preservation times, and a chemical inactivation approach on NAT. RESULTS: Our study showed increased Ct values in specimens from diagnosed COVID-19 patients in RT-PCR tests after thermal incubation. Moreover, about half of the weak-positive samples (7 of 15 samples, 46.7%) were RT-PCR negative after heat inactivation in at least one parallel testing. The use of guanidinium-based lysis for preservation of these specimens had a smaller impact on RT-PCR results with fewer false negatives (2 of 15 samples, 13.3%) and significantly less increase in Ct values than heat inactivation. CONCLUSION: Thermal inactivation adversely affected the efficiency of RT-PCR for SARS-CoV-2 detection. Given the limited applicability associated with chemical inactivators, other approaches to ensure the overall protection of laboratory personnel need consideration.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/diagnosis , Hot Temperature , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Viral Load , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , False Negative Reactions , Feces/virology , Guanidine/chemistry , Humans , Pandemics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Specimen Handling/methods , Sputum/virology , Time Factors , Virus Inactivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL