Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Lancet Microbe ; 2(10): e508-e517, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1475189

ABSTRACT

Background: We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing. Methods: We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew's Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for "viral infection", "transcriptome", "biomarker", and "blood". We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity. Findings: We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27-47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91-0·99), sensitivity 0·84 (0·70-0·93), and specificity 0·95 (0·85-0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91-0·95). Interpretation: Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge. Funding: Barts Charity, Wellcome Trust, and National Institute of Health Research.

3.
J Infect ; 2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.

5.
Diagn Microbiol Infect Dis ; 101(2): 115449, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1316455

ABSTRACT

INTRODUCTION: During the COVID-19 pandemic, widespread introduction of SARS-CoV-2 antibody testing was introduced without a full understanding of the assays performance or the antibody kinetics following infection with SARS-CoV-2. METHODS: We performed an evaluation of 2 anti-SARS-CoV-2 antibody assays with a more detailed look into the effect of immune status on antibody sensitivity. RESULTS: Both assays demonstrated 100% specificity. The overall sensitivity of the Roche was 92.1% at ≥14 days and 94.8% at ≥21 days, and the overall sensitivity of the Abbott was 94.4% at ≥14 days and 98.2% at ≥21 days. 7/41 (17%) of patients included in this cohort were immunocompromised. Seroconversion was seen less commonly in the immunocompromised (4/7 [57.1%] seroconverted) and after excluding these patients 100% sensitivity was seen in both assays at ≥21 days. DISCUSSION: Performance of both assays in the immunocompetent appeared excellent after 21 days postsymptom onset. Both assays are highly specific.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Immunocompromised Host , Kinetics , Male , Middle Aged , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Seroconversion
6.
Lancet Microbe ; 2(10): e508-e517, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1305340

ABSTRACT

Background: We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing. Methods: We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew's Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for "viral infection", "transcriptome", "biomarker", and "blood". We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity. Findings: We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27-47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91-0·99), sensitivity 0·84 (0·70-0·93), and specificity 0·95 (0·85-0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91-0·95). Interpretation: Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge. Funding: Barts Charity, Wellcome Trust, and National Institute of Health Research.

7.
Front Med (Lausanne) ; 8: 642723, 2021.
Article in English | MEDLINE | ID: covidwho-1229179

ABSTRACT

Introduction: SARS-CoV-2 antibody detection serves as an important diagnostic marker for past SARS-CoV-2 infection and is essential to determine the spread of COVID-19, monitor potential COVID-19 long-term effects, and to evaluate possible protection from reinfection. A study was conducted across three hospital sites in a large central London NHS Trust in the UK, to evaluate the prevalence and duration of SARS-CoV-2 IgG antibody positivity in healthcare workers. Methods: A matrix equivalence study consisting of 228 participants was undertaken to evaluate the Abbott Panbio™ COVID-19 IgG/IgM rapid test device. Subsequently, 2001 evaluable healthcare workers (HCW), representing a diverse population, were enrolled in a HCW study between June and August 2020. A plasma sample from each HCW was evaluated using the Abbott Panbio™ COVID-19 IgG/IgM rapid test device, with confirmation of IgG-positive results by the Abbott ArchitectTM SARS-CoV-2 IgG assay. 545 participants, of whom 399 were antibody positive at enrolment, were followed up at 3 months. Results: The Panbio™ COVID-19 IgG/IgM rapid test device demonstrated a high concordance with laboratory tests. SARS-CoV-2 antibodies were detected in 506 participants (25.3%) at enrolment, with a higher prevalence in COVID-19 frontline (28.3%) than non-frontline (19.9%) staff. At follow-up, 274/399 antibody positive participants (68.7%) retained antibodies; 4/146 participants negative at enrolment (2.7%) had seroconverted. Non-white ethnicity, older age, hypertension and COVID-19 symptoms were independent predictors of higher antibody levels (OR 1.881, 2.422-3.034, 2.128, and 1.869 respectively), based on Architect™ index quartiles; participants in the first three categories also showed a greater antibody persistence at 3 months. Conclusion: The SARS-CoV-2 anti-nucleocapsid IgG positivity rate among healthcare staff was high, declining by 31.3% during the 3-month follow-up interval. Interestingly, the IgG-positive participants with certain risk factors for severe COVID-19 illness (older age, Black or Asian Ethnicity hypertension) demonstrated greater persistence over time when compared to the IgG-positive participants without these risk factors.

8.
Science ; 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1209815

ABSTRACT

SARS-CoV-2 vaccine rollout has coincided with the spread of variants of concern. We investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants. We analyzed T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection. After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351. By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants. B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms. Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants.

10.
Nephrol Dial Transplant ; 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1132560

ABSTRACT

BACKGROUND: Haemodialysis patients are extremely vulnerable to COVID-19. Their immune response after infection is unclear. We have found high seroconversion rates in this population with 95% developing antibodies. It is unclear if and how long these antibodies persist. Here we investigate this with serial antibody testing. METHODS: We identified haemodialysis patients who had confirmed SARS-CoV-2 between March-May 2020 and measured monthly antibodies (IgG/IgM) in those who survived. We used a semi-quantitative cut-off index (COI) to create a qualitative result and plotted optical density (OD) over time. We used linear regression to examine the slope, as well as noting peak OD and time to peak OD. We correlated these against baseline demographics, markers of illness severity, and comorbidities. RESULTS: 122 patients were analysed. All remained antibody positive during follow-up; for a minimum of 148 days. 71% had a positive gradient indicating increasing antibody positivity over time. We found that age (p = 0.01), duration of PCR positivity (p = 0.06) and presence of symptoms (p = 0.05) were associated with a longer time to peak OD. Immunosuppression did not alter peak OD but did lead to a non-significant increase in time to peak OD and more patients had a subsequent fall in Ab levels (p = 0.02). Diabetic patients were more likely to have a positive slope (OR 2.26). CONCLUSIONS: These results indicate that haemodialysis patients have a robust and sustained antibody response after confirmed COVID-19 infection with no suggestion that immunosuppression weakens this response. Although unclear what protection these antibodies confer, this encouraging that haemodialysis patients should respond to vaccination.

11.
EBioMedicine ; 65: 103259, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116568

ABSTRACT

BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity. FUNDING: Charitable donations via Barts Charity, Wellcome Trust, NIHR.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Phosphoproteins/immunology , Protein Domains/immunology
12.
Wellcome Open Res ; 5: 179, 2020.
Article in English | MEDLINE | ID: covidwho-1068028

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-up sampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swab (for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years; 67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities; 18% smokers; 13% obesity; 11% asthma; 7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% CI 4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application  https://covid-consortium.com/application-for-samples/.

13.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-999191

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
15.
Preprint in English | ProQuest Central | ID: ppcovidwho-2091

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-usampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective observational study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swa(for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years;67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities;18% smokers;13% obesity;11% asthma;7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% C4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application https://covid-consortium.com/application-for-samples/.

SELECTION OF CITATIONS
SEARCH DETAIL
...