Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Epidemiology ; 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1831427

ABSTRACT

BACKGROUND: The emergence of the SARS-CoV-2 B.1.1.7 variant in England in 2020 and subsequent global spread emphasized the need to understand epidemiologic characteristics of SARS-CoV-2 variants. A diagnostic proxy for this variant, referred to as S-gene target failure, provided a rich dataset to assess transmissibility of the variant in an analysis of clustering in residential settings. METHODS: We used a pair-matched case-control study design to estimate odds of onward transmission within households with S-gene target failure index cases versus non-target failure index cases. We defined cases as the index in a household cluster (clustered case) and controls as a case with no subsequent household cluster (sporadic). We matched clustered and sporadic cases one-to-one on specimen week, geography, and property type. We used conditional logistic regression, adjusting for age, sex, ethnicity, and symptom status, to assess odds of residential clustering. RESULTS: Our study population comprised 57,244 individuals with specimen dates from November 23, 2020 to January 4, 2021. Crude analysis yielded 54% increased odds (OR 1.5; 95%CI 1.5-1.6) of residential clustering associated with S-gene target failure; the association remained in the fully adjusted model (OR 1.6, 95%CI 1.5-1.6). Stratified analyses by region showed increased odds of residential clustering associated with target failure in all regions apart from the Southwest, where we observed lower precision. Similar adjusted odds ratios with precise confidence intervals remained in stratified analyses by property category. CONCLUSION: We observed increased odds in all property types, consistent with greater transmissibility of the B.1.1.7 variant in this high-risk setting.

2.
Euro Surveill ; 27(15)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1793107

ABSTRACT

BackgroundHouseholds appear to be the highest risk setting for COVID-19 transmission. Large household transmission studies in the early stages of the pandemic in Asia reported secondary attack rates ranging from 5 to 30%.AimWe aimed to investigate the transmission dynamics of COVID-19 in household and community settings in the UK.MethodsA prospective case-ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. We estimated household secondary attack rates (SAR), serial intervals and individual and household basic reproduction numbers. The incubation period was estimated using known point source exposures that resulted in secondary cases.ResultsWe included 233 households with two or more people with 472 contacts. The overall household SAR was 37% (95% CI: 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. SAR were lower in larger households and highest when the primary case was younger than 18 years. We estimated a mean incubation period of around 4.5 days.ConclusionsRates of COVID-19 household transmission were high in the UK for ages above and under 18 years, emphasising the need for preventative measures in this setting. This study highlights the importance of the FFX protocol in providing early insights on transmission dynamics.


Subject(s)
COVID-19 , Adolescent , Family Characteristics , Humans , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology
3.
Lancet Child Adolesc Health ; 6(5): e16-e17, 2022 05.
Article in English | MEDLINE | ID: covidwho-1764068
4.
J Infect Dis ; 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1758754

ABSTRACT

To investigate if the AY.4.2 sub-lineage of the SARS-CoV-2 Delta variant is associated with hospitalisation and mortality risks that differ from non-AY.4.2 Delta risks, we performed a retrospective cohort study of sequencing-confirmed COVID-19 cases in England based on linkage of routine healthcare datasets. Using stratified Cox regression, we estimated adjusted hazard ratios (aHR) of hospital admission (aHR=0.85, 95% CI 0.77-0.94), hospital admission or emergency care attendance (aHR=0.87, 95% CI 0.81-0.94) and COVID-19 mortality (aHR=0.85, 95% CI 0.71-1.03). The results indicate that the risks of hospitalisation and mortality is similar or lower for AY.4.2 compared to cases with other Delta sub-lineages.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330948

ABSTRACT

Background: From 12th March 2020, individuals in England were advised to quarantine in their home if a household member tested positive for SARS-CoV-2. A mandatory isolation period of 10 days was introduced on 28th September 2020 and applied to all individuals with COVID-19. We assessed the frequency, timing, and characteristics of recovered COVID-19 cases requiring subsequent quarantine episodes due to household re-exposure. Methods In this case cohort study, all laboratory-confirmed COVID-19 cases notified in England (29th June to 28th December 2020) were analysed to identify consecutive household case(s). Multivariable logistic regression was used to determine associations between case characteristics and need to quarantine following recent infection (within 28 days of diagnosis). Results Among 1,651,550 cases resident in private dwellings and Houses of Multiple Occupancy (HMOs), 56,179 (3.4%) were succeeded by further household cases diagnosed within 11–28 days of their diagnosis. Of 1,641,412 cases arising in private homes, the likelihood of further household cases was highest for Bangladeshi (aOR = 2.20, 95% CI = 2.10–2.31) and Pakistani (aOR = 2.15, 95% CI = 2.08–2.22) individuals compared to White British, as well as among young people (17-24y vs. 25-64y;aOR = 1.19, 95% CI = 1.16–1.22), men (vs. women;aOR = 1.06, 95% CI = 1.04–1.08), London residents (vs. Yorkshire and Humber;aOR = 1.57, 95% CI = 1.52–1.63) and areas of high deprivation (IMD 1 vs. 10;aOR = 1.13, 95% CI = 1.09–1.19). Conclusions Policies requiring quarantine on re-exposure of recently recovered cases differentially impact some of the most disadvantaged populations. Quarantine exemption for individuals recently (< 28 days) recovered from COVID-19 could mitigate the socioeconomic impact of the pandemic.

6.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1740323

ABSTRACT

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Hospitalization , Humans , Vaccines, Synthetic
7.
Clin Infect Dis ; 2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1730660

ABSTRACT

BACKGROUND: We aimed to quantify the unknown losses in health-related quality of life of COVID-19 cases using quality-adjusted life days (QALDs) and the recommended EQ-5D instrument in England. METHODS: Prospective cohort study of non-hospitalised, PCR-confirmed SARSCoV2(+) cases aged 12-85 years and followed up for six months from 01 December 2020, with cross-sectional comparison to SARSCoV2() controls. Main outcomes were QALD losses; physical symptoms; and COVID-19-related private expenditures. We analysed results using multivariable regressions with post-hoc weighting by age and sex, and conditional logistic regressions for the association of each symptom and EQ-5D limitation on cases and controls. RESULTS: Of 548 cases (mean age 41.1 years; 61.5% female), 16.8% reported physical symptoms at month 6 (most frequently extreme tiredness, headache, loss of taste and/or smell, and shortness of breath). Cases reported more limitations with doing usual activities than controls. Almost half of cases spent a mean of £18.1 on non-prescription drugs (median: £10.0), and 52.7% missed work or school for a mean of 12 days (median: 10). On average, all cases lost 13.7 (95%-CI: 9.7, 17.7) QALDs, while those reporting symptoms at month 6 lost 32.9 (24.5, 37.6) QALDs. Losses also increased with older age. Cumulatively, the health loss from morbidity contributes at least 18% of the total COVID-19-related disease burden in England. CONCLUSIONS: One in 6 cases report ongoing symptoms at 6 months, and 10% report prolonged loss of function compared to pre-COVID-19 baselines. A marked health burden was observed among older COVID-19 cases and those with persistent physical symptoms.

8.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1730372

ABSTRACT

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Subject(s)
COVID-19 Vaccines , COVID-19 , /therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Dihydrotachysterol , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318164

ABSTRACT

Objective: To evaluate the relationship between coronavirus disease 2019 (COVID-19) diagnosis with SARS-CoV-2 variant B.1.1.7 (also known as Variant of Concern 202012/01) and the risk of hospitalisation compared to diagnosis with wildtype SARS-CoV-2 variants. Design: Retrospective cohort, analysed using stratified Cox regression. Setting: Community-based SARS-CoV-2 testing in England, individually linked with hospitalisation data. Participants: 839,278 laboratory-confirmed COVID-19 patients, of whom 36,233 had been hospitalised within 14 days, tested between 23rd November 2020 and 31st January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF). SGTF is a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome measures: Hospitalisation between 1 and 14 days after the first positive SARS-CoV-2 test. Results: 27,710 of 592,409 SGTF patients (4.7%) and 8,523 of 246,869 non-SGTF patients (3.5%) had been hospitalised within 1-14 days. The stratum-adjusted hazard ratio (HR) of hospitalisation was 1.52 (95% confidence interval [CI] 1.47 to 1.57) for COVID-19 patients infected with SGTF variants, compared to those infected with non-SGTF variants. The effect was modified by age (P<0.001), with HRs of 0.93-1.21 for SGTF compared to non-SGTF patients below age 20 years, 1.29 in those aged 20-29, and 1.45-1.65 in age groups 30 years or older. Conclusions: The results suggest that the risk of hospitalisation is higher for individuals infected with the B.1.1.7 variant compared to wildtype SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults above the age of 30.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308994

ABSTRACT

Background: The emergence of VOC202012/01 in England, known as B.1.1.7 or informally as the ‘UK variant’, has coincided with rapid increases in the number of PCR-confirmed positive cases in areas where the variant has been concentrated. Methods: To assess whether infection with SARS-CoV-2 variant VOC202012/01 is associated with more severe clinical outcomes compared to wild-type infection, genomically sequenced and confirmed variant and wild-type cases were linked to routine healthcare and surveillance datasets. Two statistical analyses were conducted to compare the risk of hospital admission and death within 28 days of test between variant and wild-type cases: a case-control study and an adjusted Cox proportional hazards model. Differences in severity of disease were assessed by comparing hospital admission and mortality, including length of hospitalisation and time to death.Results: Of 63,609 genomically sequenced COVID-19 cases tested in England between October and December 2020 6,038 were variant cases. In the matched cohort analysis 2,821 variant cases were matched to 2,821 to wild-type cases. In the time to event analysis we observed a 34% increased risk in hospitalisation associated with the variant compared to wild-type cases, however, no significant difference in the risk of mortality was observed. Conclusion: We found evidence of increased risk of hospitalisation after adjusting for key confounders, suggesting increase infection severity associated with this variant. Follow-up studies are needed to assess potential longer-term differences in the clinical outcomes of people infected with the VOC-202012/01 variant.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308535

ABSTRACT

Background: Care homes worldwide have suffered high rates of COVID-19, reflecting their inherent vulnerability and the institutional nature of care delivered. This study describes the impact of the pandemic in care homes across England.Method: Laboratory confirmed SARS-CoV-2 cases in England notified to PHE from 01 Jan to 25 Dec 2020 were address-matched to identify residential property classifications. Data were analysed to characterise cases and identify clusters. Associated deaths were defined as death within 60 days of diagnosis or certified as cause of death.Findings: Of 1,936,315 COVID-19 cases, 81,275 (4·2%) and 10,050 (0·52%) were identified as resident or staff in a care home, respectively, with 20,544 associated deaths identified, accounting for 31·3% of all COVID-19 deaths. Cases were identified in 69·5% of all care homes in England, with 33.1% experiencing multiple outbreaks. Multivariable analysis showed a 67% increased odds of death in care home residents ( aOR: 1·67, 95% CI: 1·63-1·72) . A total of 10,321 outbreaks were identified at these facilities, of which 8·2% identified the first case as a staff member.Interpretation: Care homes have experienced large and widespread outbreaks of COVID-19, with almost 70% affected, and just under one-third of all COVID-19 deaths occurring in this setting in-spite of early policies. A key implication of our findings is upsurges in community incidences seemingly leading to increased care homes outbreaks, thus identifying and shielding residents from key sources of infection, particularly surrounding staff, is vital to reduce the number of future outbreaks.Funding Statement: Funded by Public Health EnglandDeclaration of Interests: We declare no conflicts of interest.Ethics Approval Statement: All data were collected within statutory approvals granted to Public Health England for infectious disease surveillance and control. Information was held securely and in accordance with the Data Protection Act 2018 and Caldicott guidelines.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308292

ABSTRACT

Preventing SARS-CoV-2 transmission and protecting people from COVID-19 is the most significant public health challenge faced in recent years. COVID-19 outbreaks are occurring in workplaces and evidence is needed to support effective strategies to prevent and control these outbreaks. Investigations into these outbreaks are routinely undertaken by public health bodies and regulators in the United Kingdom (UK);however, such investigations are typically disparate in nature with a lack of consistency across all investigations, preventing meaningful analysis of the data collected. The COVID-OUT (COVID-19 Outbreak investigation to Understand Transmission) study aims to collect a consistent set of data in a systematic way from workplaces that are experiencing outbreaks, to understand SARS-CoV-2 transmission risk factors, transmission routes, and the role they play in the COVID-19 outbreaks. Suitable outbreak sites are identified from public health bodies. Following employer consent to participate, the study will recruit workers from workplaces where there are active outbreaks. The study will utilise data already collected as part of routine public health outbreak investigations and collect additional data through a comprehensive questionnaire, viral and serologic testing of workers, surface sampling, viral genome sequencing, and an environmental assessment of building plans, ventilation and current control measures. At each site, a detailed investigation will be carried out to evaluate transmission routes. A case-control approach will be used to compare workers who have and have not had SARS-CoV-2 infections during the outbreak period to assess transmission risk factors. Data from different outbreaks will be combined for pooled analyses to identify common risk factors, as well as factors that differ between outbreaks. The COVID-OUT study can contribute to a better understanding of why COVID-19 outbreaks associated with workplaces occur and how to prevent these outbreaks from happening in the future.

13.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327707

ABSTRACT

Background: The SARS-CoV-2 Omicron variant (B.1.1.529) has rapidly replaced the Delta variant (B.1.617.2) to become dominant in England. This epidemiological study assessed differences in transmissibility between the Omicron and Delta using two methods and data sources. Methods Omicron and Delta cases were identified through genomic sequencing, genotyping and S-gene target failure in England from 5-11 December 2021. Secondary attack rates for Omicron and Delta using named contacts and household clustering were calculated using national surveillance and contact tracing data. Logistic regression was used to control for factors associated with transmission. Findings Analysis of contact tracing data identified elevated secondary attack rates for Omicron vs Delta in household (15.0% vs 10.8%) and non-household (8.2% vs 3.7%) settings. The proportion of index cases resulting in residential clustering was twice as high for Omicron (16.1%) compared to Delta (7.3%). Transmission was significantly less likely from cases, or in named contacts, in receipt of three compared to two vaccine doses in household settings, but less pronounced for Omicron (aRR 0.78 and 0.88) compared to Delta (aRR 0.62 and 0.68). In non-household settings, a similar reduction was observed for Delta cases and contacts (aRR 0.84 and 0.51) but only for Omicron contacts (aRR 0.76, 95% CI: 0.58-0.93) and not cases in receipt of three vs two doses (aRR 0.95, 0.77-1.16). Interpretation Our study identified increased risk of onward transmission of Omicron, consistent with its successful global displacement of Delta. We identified a reduced effectiveness of vaccination in lowering risk of transmission, a likely contributor for the rapid propagation of Omicron.

14.
SSRN;
Preprint in English | SSRN | ID: ppcovidwho-326260

ABSTRACT

Background: The Omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection compared with Delta (B.1.617.2). We sought to better characterise Omicron severity relative to Delta by assessing the relative risk of hospital attendance, hospital admission or death in a large national cohort. Methods: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between 22 November 2021 and 9 January 2022 were linked to routine datasets on vaccination status, hospitalisation and mortality. The relative risk of attendance at hospital within 14 days, or death within 28 days following confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, region and vaccination status and further adjusted for sex, index of multiple deprivation decile, evidence of a prior infection and year of age within each age band. A secondary analysis estimated variant- and vaccine-specific vaccine effectiveness and the intrinsic relative severity of Omicron infection compared with Delta;i.e. the relative risk in unvaccinated cases. Findings: We found that the adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with Omicron compared with Delta was 0.56 (95%CI: 0.54-0.58);for hospital admission and death the estimates were 0.41 (95%CI: 0.39-0.43) and 0.31 (95%CI: 0.26-0.37), respectively. Omicron vs Delta HR estimates varied with age for all endpoints examined: the adjusted HR for hospital admission was 1.07 (95%CI: 0.83-1.38) in <10 year-olds, falling to 0.25 (95%CI: 0.21-0.30) in 60-69 year-olds, and rising to 0.48 (95%CI: 0.40-0.57) in ≥80 year-olds. For both variants, past infection gave some protection against death both in vaccinated (HR: 0.45 [95%CI: 0.30-0.68]) and unvaccinated (0.14 [95%CI: 0.04-0.45]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR: 0.99 [95%CI: 0.9-1.08]), whilst for unvaccinated cases moderate protection remained (HR: 0.53 [95%CI: 0.46-0.61]). Estimation of variant-specific vaccine effectiveness gave lower Omicron vs Delta HR estimates for hospital admission (0.29 [95%CI: 0.28-0.31]) in unvaccinated cases than estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in Omicron cases (HR for hospital admission 8-11 weeks post booster, compared with unvaccinated: 0.22 [95%CI: 0.19-0.24]), with the protection afforded after a booster not being significantly affected by the vaccine used for doses 1 and 2. Interpretation: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for Omicron compared with Delta cases, with higher reductions for more severe endpoints and significant variation with age. The (low) risk of hospital admission in children <10 years of age did not differ significantly by variant, while 60-69 year-olds had an approximately 75% reduced risk of hospital admission with Omicron compared with Delta. Underlying the observed HRs is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. A documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvac

15.
N Engl J Med ; 386(4): 340-350, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1621313

ABSTRACT

BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), have been used since December 2020 in the United Kingdom. Real-world data have shown the vaccines to be highly effective against Covid-19 and related severe disease and death. Vaccine effectiveness may wane over time since the receipt of the second dose of the ChAdOx1-S (ChAdOx1 nCoV-19) and BNT162b2 vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic Covid-19 and related hospitalization and death in England. Effectiveness of the ChAdOx1-S and BNT162b2 vaccines was assessed according to participant age and status with regard to coexisting conditions and over time since receipt of the second vaccine dose to investigate waning of effectiveness separately for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants. RESULTS: Vaccine effectiveness against symptomatic Covid-19 with the delta variant peaked in the early weeks after receipt of the second dose and then decreased by 20 weeks to 44.3% (95% confidence interval [CI], 43.2 to 45.4) with the ChAdOx1-S vaccine and to 66.3% (95% CI, 65.7 to 66.9) with the BNT162b2 vaccine. Waning of vaccine effectiveness was greater in persons 65 years of age or older than in those 40 to 64 years of age. At 20 weeks or more after vaccination, vaccine effectiveness decreased less against both hospitalization, to 80.0% (95% CI, 76.8 to 82.7) with the ChAdOx1-S vaccine and 91.7% (95% CI, 90.2 to 93.0) with the BNT162b2 vaccine, and death, to 84.8% (95% CI, 76.2 to 90.3) and 91.9% (95% CI, 88.5 to 94.3), respectively. Greater waning in vaccine effectiveness against hospitalization was observed in persons 65 years of age or older in a clinically extremely vulnerable group and in persons 40 to 64 years of age with underlying medical conditions than in healthy adults. CONCLUSIONS: We observed limited waning in vaccine effectiveness against Covid-19-related hospitalization and death at 20 weeks or more after vaccination with two doses of the ChAdOx1-S or BNT162b2 vaccine. Waning was greater in older adults and in those in a clinical risk group.


Subject(s)
COVID-19/prevention & control , Adolescent , Adult , Age Factors , Aged , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Middle Aged , Patient Acuity , Risk Factors , SARS-CoV-2 , Time Factors , United Kingdom/epidemiology
16.
Euro Surveill ; 26(48)2021 12.
Article in English | MEDLINE | ID: covidwho-1613505

ABSTRACT

Easing of COVID-19 restrictions in England in the summer of 2021 was followed by a sharp rise in cases among school-aged children. Weekly rates of SARS-CoV-2 infection in primary and secondary school children reached 733.3 and 1,664.7/100,000 population, respectively, by week 39 2021. A surge in household clusters with school-aged index cases was noted at the start of the school term, with secondary cases predominantly in children aged 5-15 years and adults aged 30-49 years.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , England/epidemiology , Family Characteristics , Humans , Schools
17.
Lancet Infect Dis ; 22(1): 35-42, 2022 01.
Article in English | MEDLINE | ID: covidwho-1598838

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. METHODS: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. FINDINGS: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17-43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32-3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08-1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47-8·05] and for hospital admission or emergency care attendance 1·58 [0·69-3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29-4·16] and 1·43 [1·04-1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. INTERPRETATION: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. FUNDING: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research.


Subject(s)
COVID-19/virology , Emergency Medical Services/statistics & numerical data , Hospitalization/statistics & numerical data , SARS-CoV-2/pathogenicity , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , England/epidemiology , Female , Humans , Male , Middle Aged , Proportional Hazards Models , SARS-CoV-2/classification , Young Adult
18.
Public Health ; 204: 21-24, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1586771

ABSTRACT

OBJECTIVES: Prisons are high-risk settings for infectious disease outbreaks because of their highly dynamic and crowded nature. During late 2020, prisons in England observed a surge in COVID-19 infection. This study describes the emergence of the Alpha variant in prisons during this period. METHODS: Alpha and non-Alpha variant COVID-19 cases were identified in prisoners in England using address-matched laboratory notifications and genomic information from COG-UK. RESULTS: Of 14,094 COVID-19-positive prisoner cases between 1 October 2020 and 28 March 2021, 11.5% (n = 1621) had sequencing results. Of these, 1082 (66.7%) were identified as the Alpha variant. Twenty-nine (2.7%) Alpha cases required hospitalisation compared with only five (1.0%; P = 0.02) non-Alpha cases. A total of 14 outbreaks were identified with the median attack rate higher for Alpha (17.9%, interquartile range [IQR] 3.2%-32.2%; P = 0.11) than non-Alpha outbreaks (3.5%, IQR 2.0%-10.2%). CONCLUSION: Higher attack rates and increased likelihood of hospitalisations were observed for Alpha cases compared with non-Alpha. This suggests a key contribution to the rise in cases, hospitalisations and outbreaks in prisons in the second wave. With prisons prone to COVID-19 outbreaks and the potential to act as reservoirs for variants of concern, sequencing of prison-associated cases alongside whole-institution vaccination should be prioritised.


Subject(s)
COVID-19 , Prisoners , COVID-19/epidemiology , England/epidemiology , Humans , Prisons , SARS-CoV-2/genetics
19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296519

ABSTRACT

Abstract Background A rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. Methods We used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. Results Between 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. Conclusions Primary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.

20.
Lancet Reg Health Eur ; 12: 100252, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1568914

ABSTRACT

BACKGROUND: The SARS-CoV-2 Delta variant (B.1.617.2), first detected in India, has rapidly become the dominant variant in England. Early reports suggest this variant has an increased growth rate suggesting increased transmissibility. This study indirectly assessed differences in transmissibility between the emergent Delta variant compared to the previously dominant Alpha variant (B.1.1.7). METHODS: A matched case-control study was conducted to estimate the odds of household transmission (≥ 2 cases within 14 days) for Delta variant index cases compared with Alpha cases. Cases were derived from national surveillance data (March to June 2021). One-to-two matching was undertaken on geographical location of residence, time period of testing and property type, and a multivariable conditional logistic regression model was used for analysis. FINDINGS: In total 5,976 genomically sequenced index cases in household clusters were matched to 11,952 sporadic index cases (single case within a household). 43.3% (n=2,586) of cases in household clusters were confirmed Delta variant compared to 40.4% (n= 4,824) of sporadic cases. The odds ratio of household transmission was 1.70 among Delta variant cases (95% CI 1.48-1.95, p <0.001) compared to Alpha cases after adjusting for age, sex, ethnicity, index of multiple deprivation (IMD), number of household contacts and vaccination status of index case. INTERPRETATION: We found evidence of increased household transmission of SARS-CoV-2 Delta variant, potentially explaining its success at displacing Alpha variant as the dominant strain in England. With the Delta variant now having been detected in many countries worldwide, the understanding of the transmissibility of this variant is important for informing infection prevention and control policies internationally.

SELECTION OF CITATIONS
SEARCH DETAIL