Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Chinese Journal of Zoonoses ; 37(12):1102-1107, 2021.
Article in Chinese | GIM | ID: covidwho-1818312

ABSTRACT

Comparing the accuracy of antibody detection reagents which based on different principles by the diagnosis of suspected cases of new crown, propose an efficient screening plan for suspected cases, and further provide a scientific basis for establishing a clinical screening path for high-risk populations. For 76 suspected cases of COVID-19 that were transferred to designated hospitals for isolation and observation due to the initial IgM antibody test, nasopharyngeal swab nucleic acid tests, serum trace virus neutralizing antibodies and three commercially available antibody test reagents with different principles were tested, combined with lung CT and the examination and clinical symptoms or other information, comprehensively judge the diagnosis or exclusion of the new crown, and compare the three kinds of serological antibody detection reagents with the clinical judgment results to compare the detection rates of the three detection methods. Through comprehensive judgment, 3 suspected cases are confirmed cases, and 73 suspected cases are excluded cases. Compared with the clinical diagnosis/exclusion results, among the three serological antibody detection methods, the chemiluminescence total antibody kit detect positive for all the 9 serums collected from the 3 confirmed cases in different time points, the detection specificity is 97.26% for 73 excluded cases, it's significantly higher than that of the chemiluminescence method IgM/IgG and the colloidal gold method IgM/IgG Separate testing (the specificity is 73.97% on the first day of admission). The chemiluminescence method for the detection of total antibodies to the 2019-nCoV has high sensitivity and high specificity, and can be used for preliminary screening of antibody detection in suspected cases. For the screening of target populations, the 2019-nCoV nucleic acid test should be performed first. If the nucleic acid test is negative, the screening path with the detection of serum total antibodies as the main indicator should be adopted.

2.
J Infect Dis ; 2022 Apr 16.
Article in English | MEDLINE | ID: covidwho-1795250

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant extensively escape neutralizing antibodies by vaccines or infection. We assessed serum neutralizing activity in sera from Delta infection following vaccination and Delta infection only against SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, Delta, and Omicron. Sera from Delta infection only could neutralize WA1 and Delta but nearly completely lost capacity to neutralize Beta and Omicron. However, Delta infection following vaccination resulted in a significant increase of serum neutralizing activity against WA1, Beta, and Omicron. This study demonstrates that breakthrough infection of Delta substantially induced high potency humoral immune response against the Omicron variant and other emerged variants.

3.
Virol J ; 19(1): 67, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785162

ABSTRACT

BACKGROUND: The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoVs) (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) still circulate worldwide. The early clinical symptoms of SARS-CoV-2 and seasonal HCoV infections are similar, so rapid and accurate identification of the subtypes of HCoVs is crucial for early diagnosis, early treatment, prevention and control of these infections. However, current multiplex molecular diagnostic techniques for HCoV subtypes including SARS-CoV-2 are limited. METHODS: We designed primers and probes specific for the S and N genes of SARS-CoV-2, the N gene of severe acute respiratory syndrome coronavirus (SARS-CoV), and the ORF1ab gene of four seasonal HCoVs, as well as the human B2M gene product. We developed and optimized a quadruple quantitative real-time PCR assay (qq-PCR) for simultaneous detection of SARS-CoV-2, SARS-CoV and four seasonal HCoVs. This assay was further tested for specificity and sensitivity, and validated using 184 clinical samples. RESULTS: The limit of detection of the qq-PCR assay was in the range 2.5 × 101 to 6.5 × 101 copies/µL for each gene and no cross-reactivity with other common respiratory viruses was observed. The intra-assay and inter-assay coefficients of variation were 0.5-2%. The qq-PCR assay had a 91.9% sensitivity and 100.0% specificity for SARS-CoV-2 and a 95.7% sensitivity and 100% specificity for seasonal HCoVs, using the approved commercial kits as the reference. Compared to the commercial kits, total detection consistency was 98.4% (181/184) for SARS-CoV-2 and 98.6% (142/144) for seasonal HCoVs. CONCLUSION: With the advantages of sensitivity, specificity, rapid detection, cost-effectiveness, and convenience, this qq-PCR assay has potential for clinical use for rapid discrimination between SARS-CoV-2, SARS-CoV and seasonal HCoVs.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Coronavirus OC43, Human , COVID-19/diagnosis , Coronavirus NL63, Human/genetics , Coronavirus OC43, Human/genetics , Humans , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics
4.
J Evid Based Med ; 15(1): 30-38, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1784678

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of Qingjin Yiqi granules (QJYQ) on post-COVID-19 condition (PCC). METHOD: Patients who met the inclusion criteria were randomly assigned to two groups, the QJYQ group received QJYQ combined with standard rehabilitation treatments (SRTs) and the control group only received SRTs. The treatment course was 14 days. The primary outcomes were modified Medical Research Council (mMRC) scale and Borg scale, while the secondary outcomes included symptoms score and 6-minute walking distance (6MWD). The safety outcome was the incidence of adverse events. RESULTS: A total of 388 patients with PCC were enrolled and randomly assigned to the QJYQ group (n = 194) and the control group (n = 194). Compared to the controls, the mMRC scale was improved in the QJYQ group, which was better than that of the control group [ß (95%CI): -0.626 (-1.101, -0.151), p = 0.010]. A significant improvement in Borg scale was also observed in the QJYQ group compared to the control group [ß (95%CI): -0.395(-0.744, -0.046), p = 0.026]. There was no statistically significant difference in symptoms score and 6MWD between the two groups (p = 0.293, p = 0.724). No treatment-related adverse events were observed in either group. CONCLUSIONS: QJYQ can bring benefits to patients with PCC, mainly in the improvement of breathlessness and fatigue.


Subject(s)
COVID-19 , COVID-19/drug therapy , Humans , Treatment Outcome
5.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415923

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
6.
Pathogens ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: covidwho-1390712

ABSTRACT

The sharp increase in the proportion of asymptomatic cases and the potential risk of virus transmission have greatly increased the difficulty of controlling the COVID-19 pandemic. The individual immune response is closely associated with clinical outcomes and pathogenic mechanisms of COVID-19. However, the clinical characteristics and immunophenotyping features of immune cells of asymptomatic individuals remain somewhat mysterious. To better understand and predict the disease state and progress, we performed a comprehensive analysis of clinical data, laboratory indexes and immunophenotyping features in 41 patients with SARS-CoV-2 (including 24 asymptomatic cases and 17 symptomatic individuals). Firstly, from the perspective of demographic characteristics, the rate of asymptomatic infection was significantly higher in those with younger age. Secondly, the laboratory test results showed that some indexes, such as CRP (acute phase reaction protein), D-Dimer and fibrinogen (the marker for coagulation) were lower in the asymptomatic group. Finally, symptomatic individuals were prone to establishing a non-protective immune phenotype by abnormally decreasing the lymphocyte count and percentage, abnormally increasing the Th17 percentage and decreasing Treg percentage, which therefore cause an increase in the neutrophil/lymphocyte ratio (NLR), monocytes/lymphocytes ratio (MLR) and Th17/Treg ratio. On the other hand, asymptomatic individuals tended to establish a more effective and protective immune phenotype by maintaining a normal level of lymphocyte count and percentage and a high level of NK cells. At the same time, asymptomatic individuals can establish a relatively balanced immune response through maintaining a low level of monocytes, a relatively low level of Th17 and high level of Treg, which therefore lead to a decrease in MNKR and Th17/Treg ratio and finally the avoidance of excessive inflammatory responses. This may be one of the reasons for their asymptomatic states. This study is helpful to reveal the immunological characteristics of asymptomatic individuals, understand immune pathogenesis of COVID-19 and predict clinical outcomes more precisely. However, owing to small sample sizes, a future study with larger sample size is still warranted.

7.
Analyst ; 146(12): 3908-3917, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1319050

ABSTRACT

The pandemic outbreak of the 2019 coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading rapidly and poses a great threat to human health. As such, developing rapid and accurate immunodiagnostic methods for the identification of infected persons is needed. Here, we proposed a simple but sensitive on-site testing method based on spike protein-conjugated quantum dot (QD) nanotag-integrated lateral flow immunoassay (LFA) to simultaneously detect SARS-CoV-2-specific IgM and IgG in human serum. Advanced silica-core@dual QD-shell nanocomposites (SiO2@DQD) with superior luminescence and stability were prepared to serve as fluorescent nanotags in the LFA strip and guarantee high sensitivity and reliability of the assay. The performance of the SiO2@DQD-strip was fully optimized and confirmed by using 10 positive serum samples from COVID-19 patients and 10 negative samples from patients with other respiratory diseases. The practical clinical value of the assay was further evaluated by testing 316 serum samples (114 positive and 202 negative samples). The overall detection sensitivity and specificity reached 97.37% (111/114) and 95.54% (193/202), respectively, indicating the huge potential of our proposed method for the rapid and accurate detection of SARS-CoV-2-infected persons and asymptomatic carriers.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
8.
Analyst ; 146(12): 3908-3917, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1221232

ABSTRACT

The pandemic outbreak of the 2019 coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading rapidly and poses a great threat to human health. As such, developing rapid and accurate immunodiagnostic methods for the identification of infected persons is needed. Here, we proposed a simple but sensitive on-site testing method based on spike protein-conjugated quantum dot (QD) nanotag-integrated lateral flow immunoassay (LFA) to simultaneously detect SARS-CoV-2-specific IgM and IgG in human serum. Advanced silica-core@dual QD-shell nanocomposites (SiO2@DQD) with superior luminescence and stability were prepared to serve as fluorescent nanotags in the LFA strip and guarantee high sensitivity and reliability of the assay. The performance of the SiO2@DQD-strip was fully optimized and confirmed by using 10 positive serum samples from COVID-19 patients and 10 negative samples from patients with other respiratory diseases. The practical clinical value of the assay was further evaluated by testing 316 serum samples (114 positive and 202 negative samples). The overall detection sensitivity and specificity reached 97.37% (111/114) and 95.54% (193/202), respectively, indicating the huge potential of our proposed method for the rapid and accurate detection of SARS-CoV-2-infected persons and asymptomatic carriers.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
9.
Cytokine ; 142: 155500, 2021 06.
Article in English | MEDLINE | ID: covidwho-1141708

ABSTRACT

We quantified the serum levels of 34 cytokines/chemokines in 30 patients with SARS-CoV-2 infection. Elevated levels of IP-10 and IL-7 were detected in the acute and convalescent stages of the infection and were highly associated with disease severity.


Subject(s)
COVID-19/blood , Chemokine CXCL10/blood , Interleukin-7/blood , SARS-CoV-2/metabolism , Severity of Illness Index , Female , Humans , Male , Middle Aged
10.
BMC Immunol ; 22(1): 14, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1088580

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus first recognized in late December 2019 that causes coronavirus disease 19 (COVID-19). Due to the highly contagious nature of SARS-CoV-2, it has developed into a global pandemic in just a few months. Antibody testing is an effective method to supplement the diagnosis of COVID-19. However, multicentre studies are lacking to support the understanding of the seroprevalence and kinetics of SARS-CoV-2 antibodies in COVID-19 epidemic regions. METHOD: A multicentre cross-sectional study of suspected and confirmed patients from 4 epidemic cities in China and a cohort study of consecutive follow-up patients were conducted from 29/01/2020 to 12/03/2020. IgM and IgG antibodies elicited by SARS-CoV-2 were tested by a chemiluminescence assay. Clinical information, including basic demographic data, clinical classification, and time interval from onset to sampling, was collected from each centre. RESULTS: A total of 571 patients were enrolled in the cross-sectional study, including 235 COVID-19 patients and 336 suspected patients, each with 91.9%:2.1% seroprevalence of SARS-CoV-2 IgG and 92.3%:5.4% seroprevalence of SARS-CoV-2 IgM. The seroprevalence of SARS-CoV-2 IgM and IgG in COVID-19 patients was over 70% less than 7 days after symptom onset. Thirty COVID-19 patients were enrolled in the cohort study and followed up for 20 days. The peak concentrations of IgM and IgG were reached on the 10th and 20th days, respectively, after symptom onset. The seroprevalence of COVID-19 IgG and IgM increased along with the clinical classification and treatment time delay. CONCLUSION: We demonstrated the kinetics of IgM and IgG SARS-CoV-2 antibodies in COVID-19 patients and the association between clinical classification and antibodies, which will contribute to the interpretation of IgM and IgG SARS-CoV-2 antibody tests and in predicting the outcomes of patients with COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Adult , Antibodies, Viral/blood , Antibody Formation , COVID-19/diagnosis , China , Cross-Sectional Studies , Disease Progression , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Prognosis , Seroepidemiologic Studies
11.
Cell Rep ; 34(4): 108666, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1064915

ABSTRACT

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Child , Epitopes, B-Lymphocyte/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Young Adult
12.
Tianjin Medical Journal ; 48(7):588-591, 2020.
Article in Chinese | GIM | ID: covidwho-961854

ABSTRACT

Objective: To investigate clinical features and imaging manifestation of patients with the COVID-19 infection in Shijiazhuang.

13.
Sens Actuators B Chem ; 329: 129196, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-933487

ABSTRACT

The accurate and rapid screening of serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control the spread of 2019 coronavirus disease (COVID-19). In this study, we reported a surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) for the simultaneous detection of anti-SARS-CoV-2 IgM/IgG with high sensitivity. Novel SERS tags labeled with dual layers of Raman dye were fabricated by coating a complete Ag shell on SiO2 core (SiO2@Ag) and exhibited excellent SERS signals, good monodispersity, and high stability. Anti-human IgM and IgG were immobilized onto the two test lines of the strip to capture the formed SiO2@Ag-spike (S) protein-anti-SARS-CoV-2 IgM/IgG immunocomplexes. The SERS signal intensities of the IgM and IgG test zones were easily recorded by a portable Raman instrument and used for the high-sensitivity analysis of target IgM and IgG. The limit of detection of SERS-LFIA was 800 times higher than that of standard Au nanoparticle-based LFIA for target IgM and IgG. The SERS-LFIA biosensor was tested on 19 positive serum samples from COVID-19 patients and 49 negative serum samples from healthy people to demonstrate the clinical feasibility of our proposed assay. The results revealed that the proposed method exhibited high accuracy and specificity for patients with SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL