Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Pacific Asia Journal of the Association for Information Systems ; 13(4):3, 2021.
Article in English | ProQuest Central | ID: covidwho-1626533
Medicine (Baltimore) ; 100(31): e26692, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1354336


ABSTRACT: To investigate computed tomography (CT) diagnostic reference levels for coronavirus disease 2019 (COVID-19) pneumonia by collecting radiation exposure parameters of the most performed chest CT examinations and emphasize the necessity of low-dose CT in COVID-19 and its significance in radioprotection.The survey collected RIS data from 2119 chest CT examinations for 550 COVID-19 patients performed in 92 hospitals from January 23, 2020 to May 1, 2020. Dose data such as volume computed tomography dose index, dose-length product, and effective dose (ED) were recorded and analyzed. The radiation dose levels in different hospitals have been compared, and average ED and cumulative ED have been studied.The median dose-length product, volume computed tomography dose index, and ED measurements were 325.2 mGy cm with a range of 6.79 to 1098 mGy cm, 9.68 mGy with a range of 0.62 to 33.80 mGy, and 4.55 mSv with a range of 0.11 to 15.37 mSv for COVID-19 CT scanning protocols in Chongqing, China. The distribution of all observed EDs of radiation received by per patient undergoing CT protocols during hospitalization yielded a median cumulative ED of 17.34 mSv (range, 2.05-53.39 mSv) in the detection and management of COVID-19 patients. The average number of CT scan times for each patient was 4.0 ±â€Š2.0, and the average time interval between 2 CT scans was 7.0 ±â€Š5.0 days. The average cumulative ED of chest CT examinations for COVID-19 patients in Chongqing, China greatly exceeded public limit and the annual dose limit of occupational exposure in a short period.For patients with known or suspected COVID-19, a chest CT should be performed on the principle of rapid-scan, low-dose, single-phase protocol instead of routine chest CT protocol to minimize radiation doses and motion artifacts.

COVID-19/diagnostic imaging , Pneumonia/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed/classification , Adult , COVID-19/complications , China , Female , Humans , Male , Middle Aged , Pneumonia/etiology , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data
Chem Commun (Camb) ; 57(57): 6979-6982, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1287828


The infection of coronavirus initiates with the binding between its spike protein receptor binding domain (RBD) and a human cellular receptor called angiotensin-converting enzyme 2 (ACE2). Here, we construct truncated ACE2 peptide-conjugated gold nanoparticles as antiviral scaffolds and study their binding with the SARS-CoV-2 RBD using dynamic light scattering (DLS). Systematic DLS analysis identifies the effective peptide-nanoparticle conjugation and its efficient, specific, and long-lasting multivalent binding towards the RBD with a binding affinity of 41 nM, indicating the potential of this antiviral platform to compete with natural ACE2-RBD interactions for viral blocking and showcasing an accessible approach to measure the binding constants and kinetics.

Angiotensin-Converting Enzyme 2/chemistry , Nanoparticles/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Dynamic Light Scattering , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Substrate Specificity
Emerging Markets Finance and Trade ; : 1-12, 2021.
Article in English | Taylor & Francis | ID: covidwho-1201905